首页|群集智能优化算法的典型改进方法综述

群集智能优化算法的典型改进方法综述

扫码查看
元启发式群集智能优化算法通过模拟自然现象或生物行为来寻找问题的最优解,是一类成功且具有竞争力的全局优化方法.本文概述了近几年典型的元启发式群集智能优化算法及其设计原理;详细介绍了其中4类典型改进方法:种群初始化、增添新策略、迭代公式调整、算法混合;对元启发式群集智能优化算法未来的改进和发展进行了展望.
A review of typical improvement methods of swarm intelligent optimization algorithms
Meta-heuristic swarm intelligent optimization algorithms are successful and competitive global opti-mization methods.They find globally optimal solutions by simulating natural phenomena or biological behav-iors.In this paper,the typical meta-heuristic swarm intelligent optimization algorithms and their design princi-ple are introduced.Secondly,four typical improvement methods of this kind of optimization algorithm are summarized in detail.There are population initialization,adding new strategies,iterative formula adjustment,and algorithm mixing.Finally,the future improvement and development of meta-heuristic swarm intelligent optimization algorithms are prospected.

meta-heuristicswarm intelligent optimization algorithmoptimize performanceimprovement method

张文雅、赵健

展开 >

辽宁科技大学 理学院,辽宁 鞍山 114051

元启发式 群集智能优化算法 优化性能 改进方法

国家自然科学基金辽宁省自然科学基金辽宁省教育厅项目

U17311282019-MS-174LJKZ0279

2024

辽宁科技大学学报
辽宁科技大学

辽宁科技大学学报

影响因子:0.349
ISSN:1674-1048
年,卷(期):2024.47(2)