首页|基于改进TextSnake的印章字符检测算法

基于改进TextSnake的印章字符检测算法

扫码查看
针对字符模糊、宽高比多变、与背景文字重叠等因素导致的印章字符易被漏检、误检等问题,提出基于TextSnake的印章字符检测算法,记作TextSnake-CR算法.首先在特征融合中嵌入手工设计的感受野增强模块,使浅层特征拥有更大感受视野,从而有效地降低误检率;其次提出颜色特征提取模块,用于提取印章字符中颜色特征,增强模糊印章字符的检测精度;最后改进模型的分类损失函数,抑制背景噪声对模型的干扰,进一步提高模型检测性能.实验结果表明,TextSnake-CR在公开印章数据集与自制数据集上的F值分别达到90.71%和81.79%,与其他算法相比,有效地提高了印章字符检测准确率.
Stamp character detection algorithm based on improved TextSnake
Stamp characters are easy to be wrongly detected and missed due to fuzzy characters,variable as-pect ratio,overlapping with background text and other factors.In order to solve these problems,a stamp char-acter detection algorithm based on TextSnake is proposed,which is referred to as the TextSnake-CR algo-rithm.Firstly,a hand-designed receptive field enhancement module is embedded in the feature fusion net-work,so that the shallow features have a larger receptive field of view,and then effectively reduce the false detection rate.Secondly,the color feature extraction module is proposed to extract the color feature of the stamp character,and enhance the detection accuracy of the fuzzy stamp character.Finally,the classification loss function of the model was refined to suppress the interference of background noise on the model,and fur-ther improve the detection performance of the model.The experimental results show that the TextSnake-CR achieves the F score of 90.71%and 81.79%on the public and the homemade stamp datasets,respectively.Compared with other algorithms,the TextSnake-CR effectively improves the detection performance of stamp character.

stamp character detectionTextSnakecolor feature extractionreceptive field enhancementclassi-fication loss function

甘辉鑫、巩荣芬、储茂祥、杨永辉

展开 >

辽宁科技大学 电子与信息工程学院,辽宁 鞍山 114051

印章字符检测 TextSnake 颜色特征提取 感受野增强 分类损失函数

2024

辽宁科技大学学报
辽宁科技大学

辽宁科技大学学报

影响因子:0.349
ISSN:1674-1048
年,卷(期):2024.47(3)