首页|一类非线性薛定谔方程解的爆破

一类非线性薛定谔方程解的爆破

扫码查看
考虑非线性薛定谔方程i∂tu=-Δu+i(-t)a(p-1)|u|p-1u,这里p>1,满足(n-2)(p-1)≤4,a≥0 是已知实数,(t,x)∈(-∞,0)×Rn,u=u(t,x)是未知的复值函数.第一,证明了反向方程解的整体适定性;第二,构造了所研究方程的一个近似解,主要想法是构造一个显函数 Φ(t,x)=(C(-t)a(p-1)+1+φ(x))-1/p-1,其中C=(p-1)/[a(p-1)+1],(t,x)∈(-∞,0)×Rn,且函数Φ满足常微分方程Φt=(-t)a(p-1)|Φ|p-1Φ,对φ加以一系列假设,使得当t→0-时,‖Φ‖L2(Rn)→∞;第三,利用能量方法及已知不等式对误差项进行估计;第四,利用紧致性理论找到了一个逼近近似解Φ的解析解,利用对近似解的估计证明最终的爆破结果.
Blowup of Solutions to a Class of Nonlinear Schr?dinger Equations
Study the following nonlinear Schrödinger equationi∂tu=-Δu+i(-t)a(p-1)|u|p-1u,wherep>1,(n-2)(p-1)≤4,a≥0 is a real number,(t,x)∈(-∞,0)×Rn,u=u(t,x)is an unknown complex value function.Firstly,the global well-posedness of the solution of the inverse equation is proved.Secondly,an approximate solution of the equation studied in this paper is constructed.The idea is to construct a explicit func-tion Φ(t,x)=(C(-t)a(p-1)+1+φ(x))-1/p-1,where C=(p-1)/[a(p-1)+1],(t,x)∈(-∞,0)×Rn.And the function Φ satisfies the ordinary differential equation of Φt=(-t)a(p-1)|Φ|p-1Φ,with a series of assumptions about φ,such that‖Φ‖L2(Rn)→∞ when t→0-.Thirdly,the energy method and some important inequalities are used to estimate the error term.Finally,we find an analytic solution close to Φ by using the compactness theorem,and prove the final blow-up result by using the previous estimate.

Nonlinear schrödinger equationGlobal well-posedness of the solution of the inverse equationApproximate solutionFinite time blow-up

宋媛

展开 >

鞍山师范学院 数学学院,辽宁 鞍山 114007

非线性薛定谔方程 反向解的整体适定性 近似解 有限时间爆破

2024

鞍山师范学院学报
鞍山师范学院

鞍山师范学院学报

影响因子:0.321
ISSN:1008-2441
年,卷(期):2024.26(4)