首页|基于CWT-sCARS的土壤铜含量高光谱反演

基于CWT-sCARS的土壤铜含量高光谱反演

扫码查看
光谱变量的有效程度与土壤铜含量的反演精度密切相关.基于原始反射率以及不同分解尺度下的小波系数,本研究采用连续小波变换(CWT)算法、稳定性竞争自适应重加权采样(sCARS)算法和随机森林(RF)算法对土壤铜含量进行了反演与验证.研究结果表明:连续小波变换可以有效提高光谱特征与土壤铜含量之间的相关性,不同分解尺度对应的最大相关系数中,最大值位于Scale 8分解尺度下1343 nm处,相关系数为0.60;使用sCARS算法可以显著减少特征变量的数量,结合CWT变换和sCARS算法可以显著减轻数据冗余,提高土壤Cu含量的反演精度.该研究可为利用高光谱遥感技术,快速、高精度反演土壤Cu含量提供重要参考.
Hyperspectral Inversion of Soil Cu Content Based on CWT-sCARS
The practical degree of spectral variables is closely related to the inversion accuracy of soil cop-per content.Based on the original reflectance and the wavelet coefficients at different decomposition scales,the continuous wavelet transform ( CWT) algorithm,the stability-competitive adaptive reweighted sampling ( sCARS) algorithm,and the random forest ( RF) algorithm were used in this study to invert and validate the soil copper content.The results showed that the continuous wavelet transform can effectively improve the correlation between spectral features and soil copper content.Among the maximum correlation coefficients corresponding to different decomposition scales,the maximum value is located at 1343 nm un-der the Scale 8 decomposition scale,with a correlation coefficient 0.60.The use of the sCARS algorithm significantly reduces the number of feature variables.Combining the CWT transform and the sCARS algo-rithm can significantly reduce the data redundancy and improve the inversion accuracy of the soil Cu con-tent .It can provide an essential reference in this study for the rapid and high-precision inversion of soil Cu content using hyperspectral remote sensing technology.

hyperspectral inversioncontinuous wavelet transformstability of competitive adaptive reweighted sampling

张世文、李唯佳、李恩伟、朱曾红、孔晨晨

展开 >

安徽理工大学 地球与环境学院,安徽 淮南 232001

安徽理工大学 空间信息与测绘工程学院,安徽 淮南 232001

高光谱反演 连续小波变换 稳定性竞争自适应重加权采样

塔里木河流域土地开发与农业资源调查淮北矿业集团科技研发项目

2021xjkk02002022-103

2024

蚌埠学院学报
蚌埠学院

蚌埠学院学报

影响因子:0.231
ISSN:2095-297X
年,卷(期):2024.13(2)
  • 28