首页|基于卷积神经网络的手势识别算法设计

基于卷积神经网络的手势识别算法设计

扫码查看
针对传感器对手势识别存在范围小、鲁棒性弱等痛点,采用MediaPipe机器学习框架对捕获的手势图像实时遍历,利用卷积神经网络进行高斯平滑滤波,并结合21个特征关节点手掌模型,根据欧氏空间距离判别阈值和单个手指曲率对指间动作做出分类,通过坐标关系建立指尖和模型特征点之间的实时映射.经测试,目标区域内手势识别准确精度达到98%,并实现了对控制音量大小等操作类手势的准确识别.
Design of Gesture Recognition Algorithm Based on Convolutional Neural Network
In response to the pain points of small range and weak robustness of sensors in gesture recogni-tion,the MediaPipe machine learning framework is used to traverse the captured gesture images in real-time,and a convolutional neural network is used for Gaussian smoothing filtering.Combined with a palm model of 21 feature joint points,fingertip movements are classified based on Euclidean distance discrimi-nation threshold and individual finger curvature,and real-time mapping between fingertips and model fea-ture points is established through coordinate relationships.According to the test,the accuracy of gesture recognition in the target area has reached 98%,and the accurate recognition of operation gestures such as control volume is realized.

human-computer interactiongesture recognitionconvolutional neural network

李银银、陈磊、杨罡、赵静

展开 >

淮南师范学院 计算机学院,安徽 淮南 232038

淮南师范学院 化学与材料工程学院,安徽 淮南 232038

人机交互 手势识别 卷积神经网络

全国重点实验室开放课题安徽省高校优秀青年科研项目淮南师范学院自然科学研究项目

COGOS-2023HE022022AH0301432022XJYB056

2024

蚌埠学院学报
蚌埠学院

蚌埠学院学报

影响因子:0.231
ISSN:2095-297X
年,卷(期):2024.13(2)
  • 8