首页|基于评分矩阵与评论文本融合的混合推荐模型

基于评分矩阵与评论文本融合的混合推荐模型

扫码查看
推荐系统已在电子商务中迅速推广应用,其带来的数据稀疏性增加了评分预测的不准确因素.提出了一种将评分和评论文本相融合的混合推荐模型(MRB),将用户偏好影响因子引入用户评分预测模型(UBP)中,将项目-时间因子引入项目评分预测模型(IBP)中,通过推荐结果平均绝对误差(MAE)实验验证,当近邻数为50时,该模型明显优于传统的模型.
Mixed Recommendation Models Based on Rating Matrix and Review Text
With the rapid application of recommendation system in E-business services, the data sparsity brought by it has increased to the factor of inaccurate score prediction.A mixed recommendation model ( MRB) was proposed that combines scoring and comment text.The weights of "user common friends"was added to User-based-prediction(UBP) and the "project-time" was added to Item-based-prediction ( IBP) .The experimental verification of the mean absolute error( MAE) showed that the model was obvi-ously superior to the traditional model when the number of nearest neighbors was near 50 .

rating matrixmatrix decompositionreview textmean absolute error

周梁

展开 >

安徽工程大学 计算机与信息学院,安徽 芜湖 241000

评分矩阵 矩阵分解 评论文本 平均绝对误差

安徽工程大学校级科研项目安徽省级质量工程项目安徽省级质量工程项目

Xjky072019C022020xsxxkc0672020SJJXSFK0297

2024

蚌埠学院学报
蚌埠学院

蚌埠学院学报

影响因子:0.231
ISSN:2095-297X
年,卷(期):2024.13(2)
  • 20