首页|一种全局图增强的图神经网络新闻推荐算法

一种全局图增强的图神经网络新闻推荐算法

扫码查看
针对现有图神经网络新闻推荐方法用户兴趣建模角度单一,且无法迅速拟合新节点特征的问题,提出一种全局图增强的图注意力网络模型,在以全局图采样子图的方式聚合邻居节点特征的同时,综合考虑用户历史时序特征和类别特征,多层级地建模用户兴趣.在MIND数据集上通过大量实验表明,提出的模型优于现有的基线网络方法.
Graph Neural Network News Recommendation Algorithm Based on Global Graph Enhanced
To address the limitations of existing graph neural network-based news recommendation meth-ods,which often suffer from a simplistic modeling of user interests and the inability to rapidly adapt to new node features,a novel global graph-enhanced graph attention network( GGE-GAT) model was proposed in this study.By aggregating neighbor node features using subgraph sampling from a global graph,the pro-posed model comprehensively models user interests by considering both user historical temporal features and category features in a multi-level manner.Extensive experimentation on the MIND dataset demon-strates the superiority of the proposed model over existing baseline network methods.

news recommendation systemgraph neural networkglobal graph enhanceduser interest modeling

杨智勇、陈向东、陈佳慧

展开 >

重庆师范大学 计算机与信息科学学院,重庆 401331

重庆工程职业技术学院 大数据与物联网学院,重庆 402246

新闻推荐系统 图神经网络 全局图增强 用户兴趣建模

重庆市教育委员会科学技术研究项目

KJQN202103413

2024

蚌埠学院学报
蚌埠学院

蚌埠学院学报

影响因子:0.231
ISSN:2095-297X
年,卷(期):2024.13(5)
  • 1