首页|冻结过程土体导热系数影响因素及预测模型研究

冻结过程土体导热系数影响因素及预测模型研究

扫码查看
为探究土体导热系数的基本规律,采用瞬态平面热源法测试了冻结过程土体导热系数。研究了土体在不同温度、含水率和干密度物理指标下导热系数变化规律,分析了这三个物理指标动态变化对土体导热系数的影响机制。基于试验数据,建立了DT、RF、GBDT、AdaBoost、SVR、BPNN共六种机器学习模型以预测土体导热系数,通过四个性能指标评估了六种机器学习模型的预测能力,并与三种经验模型进行了对比。此外,基于RF和GBDT进行了特征重要性分析。结果表明:未冻结阶段土体导热系数无显著变化。剧烈相变阶段,因含水率和干密度的不同,土体导热系数随温度的降低分别呈现出减小和增大的趋势,其中增大的趋势随着含水率的增加而增加。冻结阶段,因测试过程中土样的水分蒸发和迁移,土体导热系数随着温度的降低而减小。土体导热系数均随干密度和含水率的增加而增加。根据评估结果,六种机器学习模型中RF的表现较好(RMSE=0。036,MAE=0。028,R2=0。993,AD=0。004),明显优于三种经验模型,RF相较于经验模型也能更准确地预测出其他地区的土体导热系数,建议使用RF预测冻结过程土体导热系数。特征重要性分析表明含水率、温度和孔隙率是影响冻结过程土体导热系数的重要因素。
Influence factors and model prediction of soil thermal conductivity during freezing
In order to investigate the basic rules of thermal conductivity of the soil,the transient planar heat source method was used to test the thermal conductivity of the soil during freezing.The variation of the thermal conductivity of soils at different temperatures,moisture content,and dry density physical indicators is studied.The mechanism by which the dynamics of these three physical indicators affect the thermal conductivity of the soil is analyzed.Based on the experimental data,six machine learning models,DT,RF,GBDT,AdaBoost,SVR and BPNN,were developed to predict the thermal conductivity of the soil.The predictive performance of six machine learning models and three empirical models is evaluated through four performance indicators.In ad-dition,feature importance analysis is carried out based on RF and GBDT.The results indicate that there is no significant change in the thermal conductivity of the soil during the unfrozen phase.During the phase change stage,the thermal conductivity of soil exhibits a decreasing and increasing trend with decreasing temperature de-pending on the moisture content and dry density,respectively,with the increasing trend increasing with increas-ing moisture content.During the frozen phase,the thermal conductivity of the soil decreases as the temperature decreases due to the evaporation and migration of water from the soil sample during the test.The thermal conduc-tivity of the soil increases with both dry density and moisture content.Based on the evaluation results,the perfor-mance of RF is better among the six machine learning models(RMSE=0.036,MAE=0.028,R2=0.993,AD= 0.004),significantly outperforming the three empirical models.Compared to empirical models,RF can also more accurately predict the thermal conductivity of soil in other regions.It is recommended to use RF to predict the thermal conductivity of soil during the freezing process.The analysis of feature importance highlights that moisture content,temperature,and porosity are significant factors that influence the thermal conductivity of fro-zen soil.

thermal conductivitytemperaturemoisture contentmachine learningfeature importance

刘凤云、罗怀瑞、万旭升、骆吉庆

展开 >

西南石油大学 土木工程与测绘学院,四川 成都 610500

中国石油川庆钻探工程有限公司安全环保质量监督检测研究院,四川 广汉 618300

导热系数 温度 含水率 机器学习模型 特征重要性

国家自然科学基金国家自然科学基金

4207108742271146

2024

冰川冻土
中国地理学会 中国科学院寒区旱区环境与工程研究所

冰川冻土

CSTPCD
影响因子:2.546
ISSN:1000-0240
年,卷(期):2024.46(1)
  • 25