首页|面向无人机航拍图像的多尺度目标检测研究

面向无人机航拍图像的多尺度目标检测研究

扫码查看
针对无人机航拍图像背景复杂、小目标占比高且分布不均导致的现有算法精度不佳等问题,提出了 一种面向无人机航拍图像的多尺度目标检测网络VTO-YOLOv8.首先,采用WIoU v3作为边界框回归损失函数,并使用明智的梯度分配策略,这一策略将使网络更加关注普通质量样本,从而提高其定位能力;其次,设计四层T-BiFPN结构,加强浅层特征和深层特征的融合;此外,设计C2f-DBB多分支模块,在不增加计算量的前提下,提升检测性能;同时,使用聚焦调制模块,加强不同尺度信息的交互.实验结果表明,网络在Visdrone2019数据集上相较基准模型在mAP50和mAP指标上分别提高了 9.0%和5.9%,同时参数降低了 22.6%,可更好地应用于无人机航拍目标检测中.
Multiscale Target Detection for UAV Aerial Images
A multiscale target detection network,VTO-YOLOv8,for unmanned aerial vehicle(UAV)images is proposed to address the low accuracy of existing algorithms caused by complex backgrounds,a high proportion of small targets,and uneven distributions.First,wise intersection over union(WIoU)v3 was used as the bounding-box regression loss,and a wise gradient allocation strategy was employed for the network to focus more on regular quality samples and improve localization ability.Second,a four-layer target bi-directional feature pyramid network(T-BiFPN)structure was designed to strengthen the integration of shallow and deep features.Furthermore,a faster implementation of CSP bottleneck with diverse branch blocks(C2f-DBB)module was designed to improve the detection performance of the network without increasing computational complexity.In addition,a focal modulation module was used to enhance the interaction of information at different scales.The experimental results demonstrated that the proposed network improved the mean average precision(mAP)and mAP50 by 5.9%and 9.0%,respectively,compared with those of the baseline network on the Visdrone2019 dataset.Moreover,the network parameters were reduced by 22.6%.The proposed method can be applied to target detection in UAV aerial photography.

object detectionUAV imagefeature fusionmultibranch modulemultiscale target detection

贾亮、林铭文、戚丽瑾、谈瑾

展开 >

沈阳航空航天大学电子信息工程学院,沈阳 110136

目标检测 无人机图像 特征融合 多分支结构 多尺度目标检测

国家自然科学基金项目航空科学基金项目

616713102019ZC054004

2024

半导体光电
中国电子科技集团公司第四十四研究所

半导体光电

CSTPCD北大核心
影响因子:0.362
ISSN:1001-5868
年,卷(期):2024.45(3)
  • 4