首页|林业碳汇分析中基于微波遥感的塞罕坝机械林场林地上生物量监测研究

林业碳汇分析中基于微波遥感的塞罕坝机械林场林地上生物量监测研究

扫码查看
随着全球气候变化带来的挑战,精确监测林业碳汇对于制定有效的碳管理政策至关重要.以塞罕坝机械林场为案例,验证基于微波遥感的林地上生物量监测方法.采用Freeman二分量分解来处理遥感图像,并结合随机森林算法与遗传算法(Random Forest Genetic Mixing,RFGM)对森林生物量进行估算.结果显示,所开发RFGM算法优于传统逐步回归模型,RFGM的决定系数达到0.767,相对均方根误差减至20.37%.研究为塞罕坝机械林场生物量的监测提供新的视角,为全球碳循环研究贡献重要数据.
Monitoring of Aboveground Biomass in Saihanba Mechanical Forest Farm based on Microwave Remote Sensing in Forestry Carbon Sink Analysis
With the challenges brought by global climate change,precise monitoring of forestry carbon sinks is crucial for developing effective carbon management policies.Using the Saihanba Mechanical Forest Farm as a case study,this research verifies the method of monitoring forest biomass based on microwave remote sensing.Freeman binary decomposition is used to process remote sensing images and combine the Random Forest Genetic Mixing(RFGM)algorithm with the Random Forest algorithm to estimate forest biomass.The results showed that the developed RFGM algorithm outperformed traditional stepwise regression models,with a determination coefficient of 0.767 and a relative root mean square error reduced to 20.37%.The research provides a new perspective for monitoring the biomass of the Saihanba Mechanical Forest Farm and contributes important data to global carbon cycling research.

carbon sink analysismicrowave remote sensingbiomasspolarization decomposition

王金成

展开 >

河北省塞罕坝机械林场,河北 承德 068450

碳汇分析 微波遥感 生物量 极化分解

2025

环境科学与管理
黑龙江省环境保护科学研究院

环境科学与管理

影响因子:0.681
ISSN:1673-1212
年,卷(期):2025.50(1)