首页|基于深度学习的半监督语义分割综述

基于深度学习的半监督语义分割综述

扫码查看
语义分割在诸多现实领域有丰富的应用,但是其训练过程需要大量像素级别标注图像,训练成本较高.半监督语义分割可以在仅使用少量标注图像和大量无标注图像的情况下进行训练,更贴近现实场景,受到国内外的广泛关注.本文分析和总结了近年基于深度学习的半监督语义分割的相关研究,对现有方法进行分类讨论.首先,介绍了半监督语义分割中使用最广泛的基准数据集,以及常用的实验设定和评价指标.其次,从基于对抗学习、基于多网络架构、基于多阶段架构以及单阶段端到端架构4个方面对基于深度学习的半监督语义分割算法进行了梳理和归类.再次,在不同数据集主流基准下对多种代表性方法进行公平对比实验.最后,从基础模型结构、单阶段端到端方法的潜在能力、有标签数据的长尾分布问题以及与先进大模型结合等方面,对半监督语义分割任务面临的挑战以及可能的未来研究方向进行了讨论.
Review of deep learning-based semi-supervised semantic segmentation
Semantic segmentation finds extensive applications across various real-worlddomains,yet its training necessitates a substantial number of pixel-level annotated images,incurring high costs. Semi-supervised semantic segmentation,which leverages a small set of labeled images alongside a large pool of unlabeled ones,aligns better with real-world scenarios,garnering widespread attention globally. This paper summarizes and analyzes the recent advancements in deep learning-based semi-supervised semantic segmentation,categorizing and discussing existing methodologies. Firstly,it outlines prevalent benchmark datasets,experimental protocols,and evaluation metrics in semi-supervised semantic segmentation. Secondly,it categorizes deep learning-based semi-supervised semantic segmentation algorithms into four paradigms:adversarial learning,multi-network architecture,multi-stage architecture,and single-stage end-to-end architecture. Then,it conducts equitable comparative experiments across various representative methodologies on mainstream benchmark datasets. Finally,it discusses the challenges confronting semi-supervised semantic segmentation tasks and potential avenues for future research,encompassing aspects like fundamental model structures,latent capabilities of single-stage end-to-end methods,long-tail distribution issues of labeled data,and integration with advanced large-scale models.

semi-supervised semantic segmentationconvolutional neural networksadversarial learningself-training

孙博远、刘夏雷、侯淇彬

展开 >

南开大学天津市视觉计算与智能感知重点实验室,天津 300350

半监督语义分割 卷积神经网络 对抗学习 自学习

国家自然科学基金

62206135

2024

北京交通大学学报
北京交通大学

北京交通大学学报

CSTPCD北大核心
影响因子:0.525
ISSN:1673-0291
年,卷(期):2024.48(2)