首页|面向隐写算法失配的小样本图像隐写分析方法

面向隐写算法失配的小样本图像隐写分析方法

扫码查看
在实际的隐写分析应用场景中,待测隐写算法大多是未知的,难以获得足量带标记的样本,从而导致隐写算法失配问题.为提升在隐写算法未知且仅有少量标记图像时隐写分析的检测性能,提出新型隐写分析网络BTONet.首先,提出结合瓶颈注意力机制的改进SRNet,即BAMS-RNet,作为BTONet的特征提取模块,从空间维度和通道维度对纹理区域进行关注,解决小样本环境下直接使用SRNet会导致检测性能不佳的问题,在带标记图像数量极少的情况下提取有辨识性的特征.然后,将正交投影损失和交叉熵损失有机结合,从特征和预测标签2个角度强化不同类别之间的正交性,提升分类模块的性能.最后,在隐写算法失配的情况下,将BTONet与4个经典空域深度隐写分析算法进行检测准确率、训练时长、测试时长和算法稳定性等方面的比较,并进行消融实验.实验结果表明:相较于目前先进的基于深度学习的隐写分析方法,BTONet在小样本环境下能够取得更优的检测性能,检测性能提升了1.02%~10.35%;同时取得了极佳的稳定性,将检测准确率方差降低至其他隐写算法的1/60~1/20.
Few-shot image steganalysis for steganographic algorithm misalignment
In practical steganalysis applications,the steganographic algorithms under test are often un-known,making it challenging to obtain a sufficient number of labeled samples,leading to stegano-graphic algorithm misalignment issues. To enhance the detection performance of steganalysis when the steganographic algorithm is unknown and only a limited number of labeled images are available,a new steganalysis network,BTONet,is proposed. Firstly,an enhanced SRNet incorporating a bottleneck attention mechanism,referred to as BAMSRNet,serves as the feature extraction module of BTONet. BAMSRNet focuses on the texture area in both spatial and channel dimensions,addressing the limita-tions of directly using SRNet in scenarios with a limited number of labeled images to extract discrimi-native features. Secondly,an integration of orthogonal projection loss and cross-entropy loss is pro-posed to bolster the orthogonality between different categories from the perspectives of features and predicted labels,thereby enhancing the performance of the classification module. Finally,BTONet is evaluated against four well-established spatial domain deep steganalysis algorithms in terms of detec-tion accuracy,training time,testing time,and algorithm stability under steganographic algorithm mis-alignment conditions,alongside conducting ablation experiments. Experimental results indicate that,compared to current state-of-the-art deep learning-based steganalysis approaches,BTONet achieves superior detection performance in few-shot learning scenarios,with detection performance improve-ments ranging from 1.02% to 10.35%. Moreover,BTONet demonstrates exceptional stability by re-ducing the variance in detection accuracy to 1/60 to 1/20 of the compared steganography algorithms.

steganalysisbottleneck attention mechanismorthogonal projection lossfew-shot learning

赖鸣姝、翁韶伟、田华伟

展开 >

北京印刷学院 信息工程学院,北京 102600

福建理工大学福建省大数据挖掘与应用重点实验室,福州 350108

福建理工大学计算机科学与数学学院,福州 350108

中国人民公安大学公安情报研究中心,北京 100038

展开 >

隐写分析 瓶颈注意力机制 正交投影损失 小样本学习

国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金福建省杰出青年科学基金

619724056207143462262062618720952020J06043

2024

北京交通大学学报
北京交通大学

北京交通大学学报

CSTPCD北大核心
影响因子:0.525
ISSN:1673-0291
年,卷(期):2024.48(2)