首页|基于SEM模型的新能源网约车用户充电行为关联因素分析

基于SEM模型的新能源网约车用户充电行为关联因素分析

扫码查看
针对新能源网约车用户的充电行为与个人属性、车辆属性、用户满意度等多重因素之间的复杂互动问题,运用结构方程模型(Structural Equation Modeling,SEM)详细探究各定量因素之间的影响作用,并采用关联规则挖掘技术结合定类数据和定量数据分析405份样本,得到用户与充电行为相关决策的具体表现形式.研究结果表明:每增加40 km的行驶里程,充电次数将平均增加0.407次;用户个人和车辆的属性反映出不同群体的充电决策差异,路径系数分别为0.336、0.159;排队时间阈值每增加1个单位,到站时间阈值平均增加0.231个单位,说明不同场景下用户可接受的时间阈值具有一致性,通过提供针对性服务可以满足不同用户的需求;新能源网约车的预估里程准确度与用户对充电设施的满意度正相关,正相关结果的统计显著性水平P值为0.273,反映了准确预估里程能力在促进新能源网约车普及中的重要性;用户对价格和服务的多样性说明市场的灵活定价机制具有潜在价值;时间和金钱在决策中的复杂权衡,反映了行为背后的复杂性和多元性.这些结果揭示了不同因素之间的复杂关联,为未来相关领域的研究提供了理论基础和实证依据.
Correlation factors influencing charging behavior of new-energy ride-hailing users based on SEM model
This study explores the complex interactions among charging behavior and various factors within the context of new-energy ride-hailing users, including personal attributes, vehicle characteris-tics, and user satisfaction. Utilizing Structural Equation Modeling (SEM) to meticulously scrutinize the influence of these quantitative factors and leveraging association rule mining techniques to dissect 405 samples combining categorical and quantitative data, the research identifies distinct patterns in decision-making related to users and charging behavior. The results indicate that with every additional 40 kilometers driven, the number of charging sessions increases by an average of 0.407. Moreover, user and vehicle attributes exhibit variances in charging decisions across diverse groups, with path coef-ficients of 0.336 and 0.159, respectively. The queue time threshold, when increased, elevates the ar-rival time threshold by an average of 0.231 units per additional unit, indicating a consistent acceptance of time thresholds across varied scenarios and emphasizing the potential for tailored services to cater to heterogeneous user needs. The accuracy of estimated range for new energy vehicles correlates posi-tively with user satisfaction regarding charging facilities, with a P-value of 0.273, underscoring the pivotal role of precise range estimation in driving the adoption of new energy vehicles. The complex re-actions to price and service suggest the potential value of flexible pricing mechanisms in the market, while the intricate balance between time and money in decision-making underscores the multifaceted and diverse nature of these behaviors. These findings unveil the intricate associations among different factors, providing a theoretical framework and empirical substantiation for future research in related do-mains.

traffic engineeringuser charging behaviorbehavior analysisSEMnew-energy ride-hailing

杨琰、殷玮川、孙连英、隋宗智

展开 >

北京联合大学城市轨道交通与物流学院,北京 100101

交通工程 用户充电行为 行为分析 结构方程模型 新能源网约车

国家自然科学基金北京市教育委员会科技计划项目

62102032KM202211417010

2024

北京交通大学学报
北京交通大学

北京交通大学学报

CSTPCD北大核心
影响因子:0.525
ISSN:1673-0291
年,卷(期):2024.48(3)
  • 21