首页|考虑盾构机参数主动控制的隧道掘进地表沉降智能预测方法

考虑盾构机参数主动控制的隧道掘进地表沉降智能预测方法

扫码查看
针对盾构工程中合理的盾构机参数需要依靠大量工程经验进行选取以满足地表沉降的问题,提出一种考虑盾构机参数主动控制的盾构隧道掘进地表沉降智能预测模型.首先,根据工程的实际特性与时空特征,将盾构掘进地表沉降的影响因素划分为几何参数、地质参数、掘进段盾构机参数以及未掘进段控制参数.然后,针对输入数据的不同结构特征,综合采用不同的神经网络模型分别提取不同输入参数的特征,从而构建符合现场盾构掘进数据特征的混合神经网络模型.最后,利用杭州地铁3号线3个区间盾构隧道工程的施工数据库对模型预测性能进行验证,同时将本文模型与其他传统机器学习算法进行对比.研究结果表明:相较于随机森林模型与长短时记忆神经网络模型,混合神经网络模型预测性能提升近50%与30%;多种输入参数中未掘进段盾构机主动控制参数对模型的重要性最高,对结果的影响最大.研究成果可为盾构隧道掘进中的沉降预测与盾构机参数决策提供参考.
Intelligent prediction method for surface settlement in tunnel excavation considering active control of shield machine parameters
To address the challenge in shield tunneling projects where reasonable shield machine parameters must be selected based on extensive engineering experience to control surface settlement, an intelligent prediction model for surface settlement in shield tunneling is proposed, considering active control of shield machine parameters. Firstly, based on the actual characteristics and spatiotem-poral features of the project, factors influencing surface settlement during shield tunneling are divided into geometric parameters, geological parameters, shield machine parameters within the tunneling section, and control parameters for the non-tunneling section. Then, tailored to the different structural characteristics of the input data, various neural network models are comprehensively applied to extract features from different input parameters, thereby constructing a hybrid neural network model that aligns with the characteristics of on-site shield tunneling data. Finally, the model's predictive perfor-mance is validated using the construction database from three sections of the Hangzhou Metro Line 3 shield tunneling project. Additionally, the proposed model is benchmarked against other traditional machine learning algorithms. The results show that compared to the random forest model and the long short-term memory neural network model, the hybrid neural network model improves the prediction performance by nearly 50% and 30%, respectively. Among the input parameters, active control parameters of the shield machine in the non-tunneling section are identified as the most critical, exerting the highest influence on prediction outcomes. The results can provide references for settlement prediction and shield machine parameter decision-making in shield tunneling.

shield tunnelsurface settlementartificial intelligencedeep learning

高修强、彭达、王国光、李启明、姚建强、王赶

展开 >

中国电建集团华东勘测设计研究院有限公司,杭州 311122

北京交通大学 土木建筑工程学院,北京 100044

盾构隧道 地表沉降 人工智能 深度学习

国家自然科学基金

U1934210

2024

北京交通大学学报
北京交通大学

北京交通大学学报

CSTPCD北大核心
影响因子:0.525
ISSN:1673-0291
年,卷(期):2024.48(3)