首页|基于CNN-LSTM混合模型的航空公司机票价格预测

基于CNN-LSTM混合模型的航空公司机票价格预测

扫码查看
针对航空公司在竞争激烈的航线市场中对未来机票价格走势预测的需求,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆(Long Short-Term Memory,LSTM)网络的混合模型CNN-LSTM.在数据构建与输入部分,以航空公司间的竞争关系为核心,设计用于表征机票价格的通道数据结构;综合考虑影响机票价格波动的多种因素,分别构建表示航空公司属性、航班属性和日期属性的独立通道数据结构,并将这些通道数据进行整合,组成适用于卷积神经网络的多通道数据输入.在模型部分,利用一维卷积神经网络(one-dimensional Convolu-tional Neural Network,1D-CNN)对输入的多通道数据进行特征提取;通过长短期记忆网络捕捉数据中的时间依赖关系,实现对航线内不同航班未来机票价格的预测.将提出的CNN-LSTM混合模型与多种基线模型进行对比,并通过消融实验验证所选影响因素的有效性.实验结果表明:CNN-LSTM混合模型在预测性能上具有显著优势,与随机森林、支持向量机、单一卷积神经网络、单一长短期记忆网络以及向量自回归模型相比,预测平均绝对误差降低了18.74%~57.02%,平均绝对百分比误差降低了9.31%~22.16%;消融实验结果证实了影响因素的引入可以提升模型的性能.研究成果不仅能够为航空公司在票价制定与调整方面提供决策支持,也为机票价格预测领域的研究提供了新的思路和方法.
Airline ticket price prediction based on CNN-LSTM hybrid model
To address the need for forecasting future trends in airline ticket prices in highly competitive markets,this paper proposes a CNN-LSTM hybrid model that integrates Convolutional Neural Net-work(CNN)and Long Short-Term Memory(LSTM).In the data construction and input phase,a channel data structure is developed to represent ticket prices,emphasizing the competitive relation-ships among airlines.Furthermore,various factors influencing ticket price fluctuations are considered,leading to the creation of independent channel data structures to represent airline attributes,flight attri-butes,and date attributes.These channel data are then integrated into a multi-channel data input for-mat suitable for CNNs.In the modeling phase,a one-dimensional Convolutional Neural Network(1D-CNN)is utilized to extract features from the multi-channel input data,while the LSTM captures tem-poral dependencies within the data to predict future ticket prices for different flights on a given route.The proposed CNN-LSTM model is compared against several baseline models,and ablation experi-ments are conducted to validate the importance of the selected influencing factors.Experimental results demonstrate that the CNN-LSTM model achieves significant improvements in prediction perfor-mance.Compared with Random Forest,Support Vector Machine,standalone CNN,standalone LSTM,and Vector Autoregression model,the Mean Absolute Error is reduced by 18.74%to 57.02%,and the Mean Absolute Percentage Error is reduced by 9.31%to 22.16%.Furthermore,the ablation experiments confirm that incorporating these influencing factors enhances the model's overall performance.The findings of this study not only provide decision-making support for airlines in ticket pricing and adjustment strategies but also introduce novel methodologies and perspectives for research in airline ticket price prediction.

deep learningairline ticket predictiontime seriesconvolutional neural networklong short-term memory network

王夷龙、张生润、唐小卫、张崇横

展开 >

南京航空航天大学 民航学院,南京 211106

深度学习 机票价格预测 时间序列 卷积神经网络 长短期记忆网络

2024

北京交通大学学报
北京交通大学

北京交通大学学报

CSTPCD北大核心
影响因子:0.525
ISSN:1673-0291
年,卷(期):2024.48(5)