首页|基于时频增强残差网络的补偿电容故障诊断方法

基于时频增强残差网络的补偿电容故障诊断方法

扫码查看
针对现有轨道电路补偿电容故障诊断方法在复杂环境中受到高噪声干扰,导致故障诊断精度低的问题,提出一种基于迁移学习、连续小波变换(Continuous Wavelet Transform,CWT)和时频增强残差网络(Time-Frequency Enhanced Residual Network,TFEResNet)的智能故障诊断算法.采用CWT将原始感应电压信号的时域和频域信息相结合,生成小波时频图,该图能够将补偿电容故障的特征信息映射到不同时间和尺度的局部位置,有效增强模型对故障特征的捕捉能力;将小波时频图输入到构建的TFEResNet模型中进行迁移学习训练,用于特征提取和故障分类,TFEResNet能够从时频图中提取复杂的时频特征,减少信号中多余和无用噪声的不良影响,提升诊断精度和模型的泛化能力.实验结果表明:在高噪声环境下,本文方法相较于其他方法在补偿电容故障诊断中表现出更高的准确率,其值达到99.28%,同时精确率、召回率和F1评分等指标也更优,证明了方法的有效性,为基于数据驱动的轨道电路补偿电容故障诊断提供了一种新方法.
Compensation capacitor fault diagnosis method based on time-frequency enhanced residual network
To address the issue of low fault diagnosis accuracy in existing compensation capacitor fault diagnosis methods for track circuits under high noise interference in complex environments,an intelli-gent fault diagnosis algorithm based on transfer learning,Continuous Wavelet Transform(CWT),and Time-Frequency Enhanced Residual Network(TFEResNet)is proposed.First,CWT is employed to integrate the time-domain and frequency-domain information of the original induced voltage signal,generating a wavelet time-frequency map.This map effectively enhances the model's ability to cap-ture fault characteristics by mapping compensation capacitor fault features to local positions at different times and scales.The wavelet time-frequency map is then input into the constructed TFEResNet model for transfer learning training,which is used for feature extraction and fault classification.TFER-esNet can extract complex time-frequency features from the map,mitigating the adverse effects of re-dundant and irrelevant noise in the signal,thereby improving diagnosis accuracy and generalization ca-pability of the model.Experimental results show that,in high-noise environments,the proposed algo-rithm outperforms other methods in compensation capacitor fault diagnosis,achieving an accuracy of 99.28%.Additionally,it shows superior performance in precision,recall,and F1-score,demonstrat-ing the effectiveness of the method and providing a novel approach for data-driven compensation ca-pacitor fault diagnosis in track circuits.

track circuittime-frequency enhanced residual networktransfer learningcompensation capacitor fault diagnosisContinuous Wavelet Transform(CWT)

陈光武、陈俊、石建强、李鹏

展开 >

兰州交通大学自动化与电气工程学院,兰州 730070

兰州交通大学甘肃省高原交通信息工程及控制重点实验室,兰州 730070

轨道电路 时频增强残差网络 迁移学习 补偿电容故障诊断 连续小波变换

2024

北京交通大学学报
北京交通大学

北京交通大学学报

CSTPCD北大核心
影响因子:0.525
ISSN:1673-0291
年,卷(期):2024.48(5)