首页|可变带宽核估计与卷积神经网络结合的充电负荷预测

可变带宽核估计与卷积神经网络结合的充电负荷预测

扫码查看
针对电动汽车充电负荷预测研究中存在的充电负荷预测耗时长、效率低、结果不准确等问题,提出一种可变带宽核估计与卷积神经网络时间序列预测相结合的预测方法.首先,结合电动汽车的充电行为和行驶习惯,获得大规模电动汽车的充电行驶数据,基于大量的实时数据,深入分析大规模电动汽车充电负荷的多种影响因素,并基于影响因素和实际路况等构建单位里程耗电量模型.然后,为准确拟合数据,引入3种传统概率模型,分析并比较它们的优缺点和拟合的准确度.最后,基于拟合结果,采用拟合准确度最高的可变带宽核估计模型对电动汽车充电负荷进行拟合,基于拟合结果结合卷积神经网络对电动汽车充电负荷进行预测.研究结果表明:所提方法将电动汽车充电负荷预测的平均误差降至3.11%,最大误差降至6.42%,有效提高了预测准确度,可为电网系统的维护提供借鉴和参考.
Charging load prediction using variable bandwidth kernel estimation combined with convolutional neural networks
To address the challenges of time-consuming processes,low efficiency,and inaccurate re-sults in Electric Vehicle(EV)charging load prediction,this study proposes a prediction method com-bining variable bandwidth kernel estimation with Convolutional Neural Network(CNN)-based time se-ries prediction.First,the charging and driving data of large-scale EVs are collected by analyzing their charging behaviors and driving habits.Using extensive real-time data,the study conducts an in-depth analysis of multiple factors influencing large-scale EV charging load and constructs a unit mileage en-ergy consumption model based on these influencing factors and actual road conditions.Next,to im-prove data fitting accuracy,three traditional probabilistic models are introduced,and their advantages,disadvantages as well as fitting accuracy are analyzed and compared.Finally,based on the fitting re-sults,the variable bandwidth kernel estimation model with the highest fitting accuracy is used to fit the EV charging load.The fitted results are then combined with a CNN to predict EV charging load.The results demonstrate that the proposed method reduces the average prediction error of EV charging load to 3.11%and the maximum error to 6.42%,which significantly improves the prediction accuracy,pro-viding reference and guidance for the maintenance of power grid systems.

electric vehiclesvariable bandwidth kernel estimationconvolution neural networksload forecasting

王国君、王立业、廖承林、王丽芳、袁晓冬、王明深

展开 >

中国科学院电工研究所 电力电子与电气驱动重点实验室,北京 100190

中国科学院大学,北京 100149

国网江苏省电力有限公司 电力科学研究院,南京 211103

电动汽车 可变带宽核估计 卷积神经网络 负荷预测

2024

北京交通大学学报
北京交通大学

北京交通大学学报

CSTPCD北大核心
影响因子:0.525
ISSN:1673-0291
年,卷(期):2024.48(5)