首页|基于HMI-POA-VMD的列车轴箱轴承故障诊断

基于HMI-POA-VMD的列车轴箱轴承故障诊断

Fault diagnosis of train axle box bearing based on HMI-POA-VMD

扫码查看
针对列车轴箱轴承服役条件恶劣,轴承故障信号易被干扰噪声湮没,提取故障特征存在较大难度等问题,提出一种融合包络熵与峭度的调和均值指标(Harmonic Mean Index,HMI)适应度函数的变分模态分解(Variational Mode Decomposition,VMD)参数优化方法,并通过等比例试验台轴承故障数据对算法进行验证.首先,为保证综合函数表征的信号周期性与冲击性在同一个量级,引入调和均值参数,将包络熵与峭度调和均值指标作为适应度函数,采用鹈鹕优化算法(Pelican Optimization Algorithm,POA)进行全局最优值搜索;其次,通过HMI-POA算法优化筛选VMD关键参数,确定最优分解层数K和惩罚因子α,代入关键参数值将故障信号分解为K个本征模态函数(Intrinsic Mode Function,IMF),并根据加权峭度(Weighted Kurtosis,WK)指标确定最佳分量;最后,包络解调最佳分量信号,提取滚动轴承的故障特征成分,采用等比例试验台故障数据验证所提HMI-POA-VMD算法的有效性,并与传统方法比较,以故障特征系数(Fault Feature Coefficient,FFC)为评判依据,验证其优越性.研究结果表明:所提方法具有较高的故障频率提取率,相较于单一适应度函数优化,FFC提升49.1%,相较于传统VMD,FFC提升62.5%,有效提取了更为丰富的故障频率,实现了噪声环境下特征信息的准确获取.
To address the challenges associated with the harsh operating conditions of train axle box bearings,where fault signals are often obscured by noise and extracting fault features remains difficult,this study proposes a Variational Mode Decomposition(VMD)parameter optimization method.The method integrates envelope entropy and kurtosis into a Harmonic Mean Index(HMI)fitness function.The algorithm is validated using fault data from a proportional test bench.First,to ensure that the syn-thetic function effectively captures both the periodicity and impulsiveness of signals at comparable mag-nitudes,the harmonic mean index is introduced.This index,combining kurtosis and envelope en-tropy,serves as the fitness function,and the Pelican Optimization Algorithm(POA)is employed to perform a global search for optimal values.Second,the crucial parameters of VMD are optimized and determined using the HMI-POA algorithm,including the optimal decomposition layer number K and punishment factor α.These crucial parameters are then applied to decompose fault signals into K Intrin-sic Mode Function(IMF),with the optimal component identified based on the Weighted Kurtosis(WK)index.Finally,the envelope demodulation of the optimal component signal is performed to ex-tract the fault characteristic features of the rolling bearings.The proposed HMI-POA-VMD algorithm is validated using fault data from a proportional test bench.Its superiority is further demonstrated through comparison with traditional methods,using the Fault Feature Coefficient(FFC)as the evalua-tion criterion.Experimental results show that the proposed method significantly enhances the extrac-tion of fault frequencies.Compared to single fitness function optimization and traditional VMD,the FFC improves by 49.1%and 62.5%respetively.This highlights the method's capability to extract richer fault frequency information and accurately identify features in noisy environments.

rolling bearingvariational mode decompositionPOAharmonic mean indexfault fea-ture extraction

陈江涛、薛海、白永亮

展开 >

兰州交通大学 机电工程学院,兰州 730070

滚动轴承 变分模态分解 鹈鹕优化算法 调和均值指标 故障特征提取

2024

北京交通大学学报
北京交通大学

北京交通大学学报

CSTPCD北大核心
影响因子:0.525
ISSN:1673-0291
年,卷(期):2024.48(6)