首页|基于HMI-POA-VMD的列车轴箱轴承故障诊断

基于HMI-POA-VMD的列车轴箱轴承故障诊断

扫码查看
针对列车轴箱轴承服役条件恶劣,轴承故障信号易被干扰噪声湮没,提取故障特征存在较大难度等问题,提出一种融合包络熵与峭度的调和均值指标(Harmonic Mean Index,HMI)适应度函数的变分模态分解(Variational Mode Decomposition,VMD)参数优化方法,并通过等比例试验台轴承故障数据对算法进行验证.首先,为保证综合函数表征的信号周期性与冲击性在同一个量级,引入调和均值参数,将包络熵与峭度调和均值指标作为适应度函数,采用鹈鹕优化算法(Pelican Optimization Algorithm,POA)进行全局最优值搜索;其次,通过HMI-POA算法优化筛选VMD关键参数,确定最优分解层数K和惩罚因子α,代入关键参数值将故障信号分解为K个本征模态函数(Intrinsic Mode Function,IMF),并根据加权峭度(Weighted Kurtosis,WK)指标确定最佳分量;最后,包络解调最佳分量信号,提取滚动轴承的故障特征成分,采用等比例试验台故障数据验证所提HMI-POA-VMD算法的有效性,并与传统方法比较,以故障特征系数(Fault Feature Coefficient,FFC)为评判依据,验证其优越性.研究结果表明:所提方法具有较高的故障频率提取率,相较于单一适应度函数优化,FFC提升49.1%,相较于传统VMD,FFC提升62.5%,有效提取了更为丰富的故障频率,实现了噪声环境下特征信息的准确获取.
Fault diagnosis of train axle box bearing based on HMI-POA-VMD
To address the challenges associated with the harsh operating conditions of train axle box bearings,where fault signals are often obscured by noise and extracting fault features remains difficult,this study proposes a Variational Mode Decomposition(VMD)parameter optimization method.The method integrates envelope entropy and kurtosis into a Harmonic Mean Index(HMI)fitness function.The algorithm is validated using fault data from a proportional test bench.First,to ensure that the syn-thetic function effectively captures both the periodicity and impulsiveness of signals at comparable mag-nitudes,the harmonic mean index is introduced.This index,combining kurtosis and envelope en-tropy,serves as the fitness function,and the Pelican Optimization Algorithm(POA)is employed to perform a global search for optimal values.Second,the crucial parameters of VMD are optimized and determined using the HMI-POA algorithm,including the optimal decomposition layer number K and punishment factor α.These crucial parameters are then applied to decompose fault signals into K Intrin-sic Mode Function(IMF),with the optimal component identified based on the Weighted Kurtosis(WK)index.Finally,the envelope demodulation of the optimal component signal is performed to ex-tract the fault characteristic features of the rolling bearings.The proposed HMI-POA-VMD algorithm is validated using fault data from a proportional test bench.Its superiority is further demonstrated through comparison with traditional methods,using the Fault Feature Coefficient(FFC)as the evalua-tion criterion.Experimental results show that the proposed method significantly enhances the extrac-tion of fault frequencies.Compared to single fitness function optimization and traditional VMD,the FFC improves by 49.1%and 62.5%respetively.This highlights the method's capability to extract richer fault frequency information and accurately identify features in noisy environments.

rolling bearingvariational mode decompositionPOAharmonic mean indexfault fea-ture extraction

陈江涛、薛海、白永亮

展开 >

兰州交通大学 机电工程学院,兰州 730070

滚动轴承 变分模态分解 鹈鹕优化算法 调和均值指标 故障特征提取

2024

北京交通大学学报
北京交通大学

北京交通大学学报

CSTPCD北大核心
影响因子:0.525
ISSN:1673-0291
年,卷(期):2024.48(6)