首页|基于改进YOLOv8的轨道板裂缝检测算法

基于改进YOLOv8的轨道板裂缝检测算法

扫码查看
高铁轨道板裂缝严重危害车辆运行安全,针对目前裂缝维护中存在无效修复裂缝的问题,提出基于YOLOv8-DSC模型的多类裂缝检测方法.首先,在骨干网络引入动态蛇形卷积模块(Dy-namic Snake Convolution,DSC),基于此重新构造C2f中的Bottleneck结构,建立为C2f-v1模块,从而替换YOLOv8骨干网络的部分C2f模块,提升无效修复裂缝多尺度细节特征的获取能力;其次,在颈部网络引入CBAM注意力机制,增强模型对关键特征的关注度,强化细小裂缝特征在神经网络中的传递;再次,在损失函数方面,利用SIoU损失函数替换CIoU,削弱几何因素对模型的过度惩罚,减少对模型训练的干预以增加模型对相似裂缝的泛化能力;最后,从网络结构、裂缝数据、分类方法和环境条件 4个方面对其进行验证和评价.研究结果表明:YOLOv8-DSC模型相较于YO-LOv8原模型,漏检误检情况得到明显改善,平均精度均值及查全率分别提高了4.6%、4.0%,且在不利环境条件下具有良好的鲁棒性和适应性,有效实现了轨道板无效修复裂缝的准确检测.
Crack detection in track slabs based on an improved YOLOv8 algorithm
Cracks in high-speed railway track slabs pose a severe threat to the safety of vehicle opera-tions.To address the issue of ineffective crack repairs in current maintenance practices,this study pro-poses a multi-class crack detection method based on the YOLOv8-DSC model.First,the Dynamic Snake Convolution(DSC)module is incorporated into the backbone network.Based on this,the Bottleneck structure in C2f is reconstructed and established as the C2f-v1 module,which replaces cer-tain C2f modules in the YOLOv8 backbone network to enhance the extraction of multi-scale detailed features related to ineffective crack repairs.Second,the CBAM attention mechanism is introduced into the neck network to improve the model's focus on critical features,enhancing the transmission of small crack features within the neural network.Third,the SIoU loss function is employed to replace CIoU,reducing the excessive penalization caused by geometric factors and minimizing training interfer-ence,thereby increasing the model's generalization capability for similar cracks.Finally,the proposed method is validated and evaluated in four dimensions:network structure,crack data,classification methods,and environmental conditions.Experimental results demonstrate that,compared to the original YOLOv8 model,the YOLOv8-DSC model significantly reduces both missed and false detections of ineffective re-paired cracks in track slabs.The model achieves a 4.6%increase in mean average precision(mAP)and a 4.0%improvement in recall,demonstrating strong robustness and adaptability under adverse environmental conditions.The method effectively enables accurate detection of ineffective crack repairs in track slabs.

high-speed railwaycrack detectiontrack slab cracksYOLOimage processing

付浩辰、白堂博、许贵阳、宗浩、段嘉明

展开 >

北京建筑大学机电与车辆工程学院,北京 100044

北京建筑大学城市轨道交通车辆服役性能保障北京市重点实验室,北京 100044

高速铁路 裂缝检测 轨道板裂缝 YOLO 图像处理

2024

北京交通大学学报
北京交通大学

北京交通大学学报

CSTPCD北大核心
影响因子:0.525
ISSN:1673-0291
年,卷(期):2024.48(6)