首页|改进灰狼算法在智能建筑配电网故障定位中的应用

改进灰狼算法在智能建筑配电网故障定位中的应用

扫码查看
随着科技的不断进步,人工智能已经广泛应用于建筑行业,并催生了智能建筑领域.本文阐述了智能化建筑,介绍了群智能算法在智能建筑中配电网故障定位方面的应用.通过采用灰狼优化算法,针对灰狼算法的不足,加入了Tent混沌映射及改良后的收敛因子a,最后加入惯性权重来提升算法性能.同时,与二进制粒子群算法和哈利斯鹰算法进行比较,结果证明改进后的灰狼算法具有更优越的特点.最后,在IEEE33 节点模型上进行单点故障和多点故障的仿真实验,验证了改进灰狼算法在智能建筑配电网故障定位中的有效性.
Improve the Application of Gray Wolf Algorithm in Fault Location of Intelligent Building Power Supply and Distribution System
With the continuous progress of science and technology,artificial intelligence has been widely used in the construction industry,and gave birth to the field of intelligent buildings.This paper describes the intelligent building and introduces the application of swarm intelligence algorithm in fault location of distribution network in intelligent building.In view of the shortcomings of grey Wolf algorithm,Tent chaos mapping and improved conver-gence factor a are added,and inertia weight is added to improve the performance of the algorithm.Meanwhile,compared with binary particle swarm optimization algorithm and Harris Eagle algorithm,the results show that the improved Grey Wolf algorithm has more superior characteristics.Finally,simulation experiments of single point fault and multi-point fault on IEEE33 node model are carried out to verify the effectiveness of improved grey Wolf algorithm in fault location of intelligent building distribution network.

intelligent buildinggray wolf algorithmTent chaos mappingIEEE33 node

颜丙旭、张毅

展开 >

吉林建筑大学电气与计算机学院,吉林 长春 130118

智能建筑 灰狼算法 Tent混沌映射 IEEE33节点

吉林省重点研发项目

20220203190SF

2024

北方建筑

北方建筑

ISSN:
年,卷(期):2024.9(4)