首页|Experimental and numerical analyses of the effect of fibre content on the close-in blast performance of a UHPFRC beam

Experimental and numerical analyses of the effect of fibre content on the close-in blast performance of a UHPFRC beam

扫码查看
Limited research has been conducted on the influences of fiber content on close-in blasting character-istics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were con-ducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diameters Φ12,Φ16,and Φ20,a reduction in maximum displacement by magnitudes of 19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from 1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Neverthe-less,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams.

Blast performanceClose-in blastFiber contentMesoscale approachUHPFRC beams

Junbo Yan、Qiyue Zhang、Yan Liu、Yingliang Xu、Zhenqing Shi、Fan Bai、Fenglei Huang

展开 >

State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China

Beijing Institute of Technology Chongqing Innovation Center,Chongqing 401120,China

National Natural Science Foundation of ChinaOpen Fund of State Key Laboratory of Explosion Science and Technology

12102050SKLEST-ZZ-21-18

2024

防务技术
中国兵工学会

防务技术

CSTPCD
影响因子:0.358
ISSN:2214-9147
年,卷(期):2024.(1)
  • 67