防务技术2024,Vol.35Issue(5) :275-288.DOI:10.1016/j.dt.2024.01.003

Probabilistic modeling of multifunction radars with autoregressive kernel mixture network

Hancong Feng Kaili. Jiang Zhixing Zhou Yuxin Zhao Kailun Tian Haixin Yan Bin Tang
防务技术2024,Vol.35Issue(5) :275-288.DOI:10.1016/j.dt.2024.01.003

Probabilistic modeling of multifunction radars with autoregressive kernel mixture network

Hancong Feng 1Kaili. Jiang 1Zhixing Zhou 1Yuxin Zhao 1Kailun Tian 1Haixin Yan 1Bin Tang1
扫码查看

作者信息

  • 1. School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China
  • 折叠

Abstract

The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.

Key words

Probabilistic forecasting/Multifunction radar/Unsupervised learning/Change point detection/Outlier detection

引用本文复制引用

基金项目

国家自然科学基金(62301119)

出版年

2024
防务技术
中国兵工学会

防务技术

CSTPCD
影响因子:0.358
ISSN:2214-9147
参考文献量31
段落导航相关论文