首页|Blast waveform tailoring using controlled venting in blast simulators and shock tubes

Blast waveform tailoring using controlled venting in blast simulators and shock tubes

扫码查看
A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing ge-ometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for miti-gating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied.

Advanced blast simulatorShock wave propagationFar-field explosionBlast loadsBlast wavesComputational fluid dynamics

Edward Chern Jinn Gan、Alex Remennikov、David Ritzel

展开 >

Faculty of Engineering and Information Sciences,University of Wollongong,Wollongong,NSW,2522,Australia

Dyn-FX Consulting Ltd,19 Laird Ave North,Amherstburg,ON,N9V 2T5,Canada

Australian Government through the Australian Research Council's Linkage Infrastructure,Equipment and Facilities(LIEF)funding

LE130100133

2024

防务技术
中国兵工学会

防务技术

CSTPCD
影响因子:0.358
ISSN:2214-9147
年,卷(期):2024.37(7)