首页|一种基于TCN-LGBM的航空发动机气路故障诊断方法

一种基于TCN-LGBM的航空发动机气路故障诊断方法

扫码查看
长时间工作在高温高压、强振动等恶劣气路环境下的航空发动机经常面临部件疲劳、腐蚀和性能退化的问题,且其故障诊断时序逻辑性不强、故障参数耦合较深等特点十分明显,为此提出一种基于时间卷积神经网络(Temporal Convolutional Network,TCN)和轻量级梯度提升机(Light Gradient Boosting Machine,LGBM)的航空发动机气路故障诊断方法。故障诊断分为故障特征提取和分类诊断两个过程:引入TCN框架,在保证故障数据训练时序逻辑的基础上,实现对远层历史信息和当前层信息的特征融合构建,融合通道注意力机制增强了高质量特征的权重;基于LGBM模型实现对特征的快速分类,利用贝叶斯方法实现对模型超参数的快速优化。以基于PROOSIS软件建模的某军用小涵道比涡扇发动机故障仿真数据为例,对6 种故障模式进行诊断识别。仿真结果表明了所提方法的有效性;通过与其他模型对比体现了该方法的优越性。
A Gas Path Fault Diagnosis Method for Aero-engine Based on TCN-LGBM Model
With the obvious characteristics of poor temporal logic in fault diagnosis and the strongly coupled feature parameters,the aero-engines working in the hostile gas path conditions of high temperature,pressure and strong vibration face with the degradation performance and structure defect problems such as fatigue and corrosion.And an aero-engine gas path fault diagnosis method based on temporal convolutional networks(TCN)and light gradient boosting machine(LGBM)is proposed to provide a feasible solution to the problems above.The diagnosis process can be divided into feature extraction and classification:TCN is introduced to guarantee the fault diagnosis training temporal logic and achieve the features fusion of distant layers and current layers,which is also strengthened by channel attention mechanism;the features are quickly classified based on LGBM model,and the Bayesian method is used to quickly optimize the model hyperparameters.Based on the aero-engine performance modelled by PROOSIS software,six types of fault mode are diagnosed and identified by taking a military low-bypass ratio turbofan engine as an example.The results indicate that the proposed model is effective for fault diagnosis and shows the superiority by comparing with other models.

aero-enginefault diagnosistemporal convolutional networklight gradient boosting machineattention mechanism

吕卫民、孙晨峰、任立坤、赵杰、李永强

展开 >

海军航空大学,山东 烟台 264000

航空发动机 故障诊断 时间卷积神经网络 轻量级梯度提升机 注意力机制

山东省自然科学基金项目

ZR2021QE193

2024

兵工学报
中国兵工学会

兵工学报

CSTPCD北大核心
影响因子:0.735
ISSN:1000-1093
年,卷(期):2024.45(1)
  • 1
  • 12