首页|面向真实战场环境的Transformer-CNN多特征聚合图像去雾算法

面向真实战场环境的Transformer-CNN多特征聚合图像去雾算法

扫码查看
军事智能系统的发展对现代战争的作战方式和制胜机理产生重大影响,然而这些系统容易受到雾霾等天气的影响导致获取的图像出现模糊、退化等问题,给后续识别、追踪等作战任务带来挑战,因此对战场含雾图像进行复原非常重要。鉴于获取同一场景下的含雾、清晰图像对难度极大,现有网络大都采用合成数据进行训练;但真实雾图和合成雾图之间的间隙,会导致在合成数据下训练的模型在真实场景中泛化性差。为此,提出一种面向真实战场环境的自注意力模型-卷积神经网络(Transformer-Convolutional Neural Network,Transformer-CNN)多特征聚合图像去雾算法。采用半监督框架,利用合成和真实战场含雾图像训练网络,使模型能够更好地应对真实含雾场景。采用双分支特征聚合架构,将CNN分支提取的局部特征和Transformer分支学习的全局特征进行聚合,以进一步提高模型去雾能力。为模拟真实战场含雾场景,构建了一套含雾战场图像数据集。实验结果表明,与8种最先进的图像去雾算法相比,所提算法在合成数据和真实图像上均表现良好。
Transformer-CNN-based Multi-feature Aggregation Algorithm for Real Battlefield Image Dehazing
The development of military intelligence systems has a great influence on the fighting mode and winning mechanism of modern war. However,these systems are easily affected by haze and other bad weather conditions,resulting in blurred and degraded images,which brings challenges to the subsequent combat missions such as identification and tracking. Therefore,it is essential to restore the haze-free images on the battlefield. Since it is hard to capture the paired clean/hazy images,most existing methods adopt synthetic data for training. However,the gap between the real and synthetic hazy images will lead to the poor generalization of a model trained on synthetic data in the real world. To this end,a Transformer-CNN-based multi-feature aggregation algorithm is proposed for real battlefield image dehazing. This network adopts a semi-supervised framework to train the model with synthetic and real hazy images so that the model can better deal with the real hazy images. The algorithm applies a two branch feature aggregation architecture to aggregate the local features extracted by CNN branch and the global features extracted by the Transformer branch to further improve the dehazing ability of the model.Moreover,a hazy battlefield image dataset is constructed to simulate the real battlefield hazy conditions.The experimental results show that,compared with 8 state-of-the-art image dehazing algorithms,the proposed algorithm performs well on both synthetic data and real images.

military intelligenceimage dehazingsemi-supervised networkTransformer-CNNfeature aggregation

王永振、童鸣、燕雪峰、魏明强

展开 >

南京航空航天大学 计算机科学与技术学院,江苏 南京210016

软件新技术与产业化协同创新中心,江苏 南京210093

军事智能 图像去雾 半监督网络 Transformer-CNN 特征聚合

2024

兵工学报
中国兵工学会

兵工学报

CSTPCD北大核心
影响因子:0.735
ISSN:1000-1093
年,卷(期):2024.45(4)
  • 31