首页|航空飞行器用300 kW高速永磁同步电机优化设计

航空飞行器用300 kW高速永磁同步电机优化设计

扫码查看
航空飞行器用高速永磁同步电机损耗密度高、散热条件差,脉宽调制电压供电产生的损耗可能会导致显著的温升,加剧Halbach磁体的退磁风险,影响电机的安全运行。针对上述问题,提出基于Nelder-Mead法的高速永磁同步电机多目标优化设计方法,以电机损耗和温升为优化目标,使用场路耦合有限元分析法和解析法计算电机在T型三电平变流器供电下的损耗,进而计算电机温升。根据寻优算法搜索最优设计区域,获得优化设计方案。分析Halbach磁体内的磁密分布和涡流损耗,对磁体进行优化设计,从而抑制退磁和损耗。设计并制造一台300 kW、30000 r/min高速永磁同步电机,仿真和实验结果表明,新提出的设计方法能够快速实现多目标寻优,并有效抑制退磁。
Optimization Design of a 300 kW High-speed Permanent Magnet Synchronous Machine for Aviation Aircraft
The temperature rise of the high-speed permanent magnet synchronous machine ( PMSM ) for aviation aircraft supplied by PWM voltage might be significant because of its high loss density and poor heat dissipation condition. What's worse, high temperature increases the demagnetization risk of Halbach-array magnets, which impairs the reliability of operation. In allusion to above problems, a multi-objective optimization method of high-speed PMSM based on Nelder-Mead algorithm is proposed. The loss and temperature rise are selected as optimization objectives. Field-circuit coupled finite element analysis method is used to calculate the loss of the machine powered by T-type three-level converter, thus calculating the temperature rise. The optimal design areas are searched by using the optimization algorithm, and the optimal solution is achieved. The flux density distribution and eddy current loss in the Halbach-array magnet are analyzed, and then the design of magnets is optimized to suppress eddy current loss and demagnetization. A 300 kW, 30000 r/min high-speed PMSM was designed and manufactured. Simulated and experimental results show that the proposed design method could realize multi-objective optimization and suppress demagnetization effectively.

aviation aircrafthigh-speed PMSMHalbach-array magnetNelder-Mead methodmulti-objective optimizationfield-circuit coupling

魏嘉麟、王又珑、温旭辉、陈晨、李文善

展开 >

中国科学院 电工研究所, 北京100190

中国科学院大学, 北京100049

齐鲁中科电工先进电磁驱动技术研究院,山东 济南250102

航空飞行器 高速永磁同步电机 Halbach磁体 Nelder-Mead法 多目标优化 场路耦合

中国科学院稳定支持基础研究领域青年团队计划中国科学院青年创新促进会项目

YSBR-0452018168

2024

兵工学报
中国兵工学会

兵工学报

CSTPCD北大核心
影响因子:0.735
ISSN:1000-1093
年,卷(期):2024.45(5)
  • 9