首页|基于多判别器双流生成对抗网络的红外与可见光图像融合

基于多判别器双流生成对抗网络的红外与可见光图像融合

扫码查看
针对现有的红外与可见光图像融合方法对源图像信息保留不充分的问题,改进了一种基于多判别器双流生成对抗网络(Generative Adversarial Network,GAN)的红外与可见光图像融合算法。改进的GAN融合框架包含一个生成器与四个判别器,将差分图像作为辅助信息,从而进一步提升网络的融合性能。算法中的差分图像不仅被作为源图像的附加信息,引导生成器关注不同模态图像的独特信息,还被用作真实数据分布,协助差分判别器与生成器进行对抗训练。所改进网络模型中,生成器采用双编码器-单解码器结构,其中编码器旨在提取不同模态特征,主要采用密集连接结构,并结合注意力模块;解码器旨在根据联结高维特征重构出融合图像。判别器对输入图像是来自真实图像还是融合图像进行判断,并根据判断的结果对生成器进行约束优化。实验结果表明,相较于对比算法,所提算法在主观判读和客观指标评价两方面均取得了更优异的融合效果。
Infrared and Visible Image Fusion Using Dual-stream Generative Adversarial Network with Multiple Discriminators
To address the problem of insufficiently retaining the source information during the process of fusing the infrared and visible images based on the existing methods,an algorithm for fusing the infrared and visible images using dual-stream generative adversarial networks(GAN)with multiple discriminators is improved.The improved GAN-based fusion framework consists of one generator and four discriminators,and utilizes the differential image as the auxiliary information to further improve the performance of the fusion network.The differential imagein the algorithm is not only used as the auxiliary information of source image to guide the generator to focus on the unique information of different modal images,but also used as the real data distribution to assist the differential discriminator in competitively training with the generator.In the improved network model,the generator adopts a dual encoder-single decoder structure,where the encoder aims to extract the features from different modalities mainly via a densely connected structure combined with an attention module,and the decoder is used to reconstruct the fused image based on the concatenated high-dimensional features.The discriminator evaluates whether the input image is the real image or the fusion image,and constrainedly optimizes the generator based on the evaluated results.Experimental results show that,compared with the other algorithms,the improved algorithm achieves better fusion results both in the subjective assessments and in the objective effects evaluated by the quantitative metrics.

image fusioninfrared imagedifferential imagegenerative adversarial networkattention mechanism

武凌霄、康家银、姬云翔、马寒雁

展开 >

江苏海洋大学 电子信息学院,江苏 连云港 222005

图像融合 红外图像 差分图像 生成对抗网络 注意力机制

国家自然科学基金连云港市"海燕计划"基金江苏海洋大学自然科学基金研究生科研与实践创新计划

622712362018-QD-011Z2015009KYCX2021-052

2024

兵工学报
中国兵工学会

兵工学报

CSTPCD北大核心
影响因子:0.735
ISSN:1000-1093
年,卷(期):2024.45(6)
  • 1