首页|面向外辐射源雷达目标探测的非时变稀疏模型和深度展开网络实现方法

面向外辐射源雷达目标探测的非时变稀疏模型和深度展开网络实现方法

扫码查看
近年来,基于稀疏特征提取的目标探测方法成为了雷达领域的研究热点.基于正交频分复用调制的外辐射源雷达(简称"外源雷达")由于发射波形不受控,一方面构建的稀疏模型会随未知发射波形时变,导致相应的目标探测方法计算量大;另一方面目标回波常常因被直达波等强杂波掩盖而面临探测困难.在此背景下,利用外源雷达的正交频分复用波形特点,使用导频位置处频域信道响应提出一种非时变稀疏模型.通过将稀疏模型求解的每一次迭代过程替代为一层神经网络,首次研究了基于深度展开网络的智能化外源雷达目标探测实现方法.仿真和实测数据结果表明:所提方法与传统杂波抑制方法在目标探测上性能相近,但有着更低的计算复杂度,且无需人工设计稀疏矩阵等稀疏模型求解参数.
A Time-invariant Sparse Model and a Deep Unrolling Network for Target Detection of Passive Radar
In recent years,the target detection method based on sparse feature extraction has become a research hotspot in radar field.However,due to the uncontrolled transmitted waveform of orthogonal frequency division multiplexing(OFDM)-based passive radar,the sparse model will change with the unknown transmitted waveform,resulting in a large amount of calculation and more manual intervention for the corresponding target detection method.On the other hand,it is difficult to detect target echo because it is often covered by strong clutter such as direct-path signal.In this context,a time-invariant sparse model is proposed by using the waveform characteristic of the OFDM-based passive radar and the channel frequency response at the pilot position.Then,a realization method of intelligent passive radar target detection based on the deep unrolling network is firstly studied by replacing each iteration process of the sparse model solution with a layer of neural network.Simulated and measured results show that the proposed method has similar performance to the traditional clutter suppression method in target detection,but it has lower computational complexity,and does not need to manually design the solving parameters such as sparse matrix of sparse model.

passive radarorthogonal frequency division multiplexing waveformtarget detectionsparse modeldeep learning

赵志欣、曹玉龙、陈远帅、周辉林、王玉皞

展开 >

南昌大学信息工程学院,江西南昌 330031

外辐射源雷达 正交频分复用波形 目标探测 稀疏模型 深度学习

国家自然科学基金项目江西省自然科学基金项目研究生创新专项基金项目

6226103620224BAB202003YC2022-S125

2024

兵工学报
中国兵工学会

兵工学报

CSTPCD北大核心
影响因子:0.735
ISSN:1000-1093
年,卷(期):2024.45(8)