首页|面向OODA作战流程的防空火力网端对端智能构建算法

面向OODA作战流程的防空火力网端对端智能构建算法

扫码查看
针对防空战场环境下目标数量多、装备协同难、体系反应拙的问题,提出一种面向侦测-整编-决策-打击(Observe-Orient-Decide-Act,OODA)作战流程的防空火力网端对端智能构建算法.围绕OODA作战流程,构建由情报网、指控网和火力网组成的防空体系框架,并基于此框架着力解决影响战场胜负关键的火力网智能构建;将拦截武器损毁目标建模为马尔可夫决策过程,并给出相应的状态空间、动作空间与奖励策略等;在此基础上,通过对标准端对端近端策略优化算法进行改进,提高模型精度和减少训练时间.以某防空反导联合区域作战场景为例,开展所提算法的评估验证.实验结果表明:所提方法相比于规则和启发式算法能够快速准确地生成防空火力网设计方案,尤其在同等大规模作战场景中的计算效率和作战成本方面具有更突出的优势,为作战体系全流程的杀伤网构建提供了基础.
End-to-end Intelligent Construction Algorithm of Air-defense Firepower Network for OODA Operation Process
Aiming at the problems of a large number of targets,difficult equipment coordination,and poor system response in an air-defense battlefield environment,an end-to-end intelligent construction algorithm of air-defense firepower network for the observe-orient-decide-act(OODA)operation process is proposed.An air-defense system-of-systems framework composed of an intelligence network,command network,and firepower network is constructed for the OODA operation process.Based on this framework,the intelligent construction of firepower network,which is the key to the success or failure on a battlefield,is solved.The process of intercepting the weapon attacking a target is modeled as a Markov decision process,and the corresponding state space,action space,and reward strategy are given.On this basis,the standard end-to-end proximal policy optimization(PPO)algorithm is optimized to improve the model accuracy and reduce the training time.The proposed algorithm is evaluated and verified by taking a joint regional operation scenario of air-defense and antimissile missiles as an example.The results show that the proposed algorithm can quickly and accurately generate the design scheme of air-defense firepower network compared with the rule-based and heuristic algorithm.Especially in terms of computational efficiency and operational cost in the same large-scale combat scenario,it provides the basis for the construction of a kill network in the whole process of the operation system-of-systems.

air-defense firepower networkimproved PPO algorithmOODA operation processbattlefield situationend-to-end training

罗雨雨、丁伟、明振军、李传浩、王国新、阎艳、王玉茜

展开 >

北京理工大学机械与车辆学院,北京 100081

江南机电设计研究所,贵州贵阳 550009

防空火力网 改进近端策略优化算法 OODA作战流程 战场态势 端对端训练

2024

兵工学报
中国兵工学会

兵工学报

CSTPCD北大核心
影响因子:0.735
ISSN:1000-1093
年,卷(期):2024.45(12)