首页|基于改进SSD算法的紫外像增强器视场瑕疵检测方法

基于改进SSD算法的紫外像增强器视场瑕疵检测方法

扫码查看
紫外像增强器视场瑕疵是影响器件成像效果的重要因素之一.针对视场瑕疵样本数量少和视场图像显示差异大的问题,采取相应的数据增强策略,并在单发多框检测(Single Shot multi-box Detector,SSD)算法的基础上,添加特征金字塔网络(Feature Pyramid Network,FPN),以解决多尺度特征难以有效识别与融合的问题.同时引入卷积注意力模块(Convolutional Block Attention Module,CBAM)去进一步加强网络对小瑕疵目标信息的关注,并抑制噪声干扰.试验结果表明:在自建的数据集上,添加了 FPN 和 CBAM 的 SSD(Feature Pyramid Network-Convolutional Block Atten-tion Module-Single Shot Multibox Detector,FPN-CBAM-SSD)算法在视场瑕疵实际检测效果方面更优于SSD算法.对于亮点、暗斑、条纹状、亮斑和暗点这5类瑕疵,其平均精准度分别提高了19.76%、22.84%、29.56%、34.55%和 38.14%.FPN-CBAM-SSD 算法能够满足实际应用需求,适应更加复杂的视场情况,可视为一种有效的紫外像增强器视场瑕疵检测新型方法.
Detection Method for Field-of-view Defect of Ultraviolet Image Intensifier Based on Improved SSD Algorithm
The field-of-view defect of UV image intensifier is acknowledged as a crucial element impacting the imaging performance of such device.The data enhancement procedures are used to address the issues of few field-of-view defect samples and the significant variances of images in field-of-view.A feature pyramid network(FPN)is added to the single shot multibox detector(SSD)algorithm for the successful detection and fusion of multiscale features.A convolutional block attention module(CBAM)is also introduced to improve the network's focus on small defect targets and minimize noise interference.The experimental results show that,on the self-constructed dataset,the feature pyramid network-convolutional block attention module-single shot multibox detector(FPN-CBAM-SSD)algorithm outperforms the SSD algorithm significantly in the actual detection of field-of-view defects.For 5 categories of defects including bright spots,dark patches,striped defects,bright patches,and dark spots,the average detection accuracy is improved by 19.76%,22.84%,29.56%,34.55%,and 38.14%,respectively.FPN-CBAM-SSD algorithm is capable of meeting the practical application requirements and adapting to more complex field-of-view conditions,making it an effective method for detecting field-of-view defects in ultraviolet image intensifiers.

ultraviolet image intensifierfield-of-view defect detectionmachine visiondeep learning

丁习文、程宏昌、袁渊、苏悦

展开 >

昆明物理研究所,云南 昆明 650223

微光夜视技术重点实验室,陕西西安 710065

紫外像增强器 视场瑕疵检测 机器视觉 深度学习

2024

兵工学报
中国兵工学会

兵工学报

CSTPCD北大核心
影响因子:0.735
ISSN:1000-1093
年,卷(期):2024.45(12)