兵工学报2024,Vol.45Issue(z2) :240-250.DOI:10.12382/bgxb.2024.0780

内嵌飞行动力学的高动态飞行器惯性基深耦合导航方法

Inertial-based Deep-coupling Navigation Method with Embedded Flight Dynamics

杨子傲 曲麒富 孙海文 李烨 嵇振涛
兵工学报2024,Vol.45Issue(z2) :240-250.DOI:10.12382/bgxb.2024.0780

内嵌飞行动力学的高动态飞行器惯性基深耦合导航方法

Inertial-based Deep-coupling Navigation Method with Embedded Flight Dynamics

杨子傲 1曲麒富 2孙海文 3李烨 3嵇振涛4
扫码查看

作者信息

  • 1. 北京理工大学 自动化学院,北京 100081;导航、制导与控制技术教育部工程研究中心,北京 100081
  • 2. 中国航天系统科学与工程研究院,北京 100037
  • 3. 海军研究院,北京 100161
  • 4. 北方华安工业集团有限公司,黑龙江 齐齐哈尔 161046
  • 折叠

摘要

为研究不依赖卫星的高动态飞行器自主导航方法,建立高动态飞行器的飞行动力学模型.采用数值积分法,解算出高动态飞行器轨迹信息,分析高动态飞行器飞行误差特性,并生成虚拟惯导数据.基于飞行误差特性,提出一种利用实测惯导数据与虚拟惯导数据动态加权的导航解算方法,并依靠"速度+姿态"匹配卡尔曼滤波方法进一步抑制导航误差.通过对内嵌飞行动力学的惯性基深耦合导航方法进行仿真,验证所提出的深耦合导航方法.仿真结果表明,新方法能够大幅度提升导航精度,在预置飞行轨迹偏差程度不同的情况下,新方法对导航效果的提升幅度分别达到97.1%、72.9%和40%.

Abstract

To study the autonomous navigation method of high dynamic flight vehicle that does not rely on satellites,a flight dynamics model of high dynamic flight vehicle is established.The numerical integration method is used to solve the trajectory information of high dynamic flight vehicle,the flight error characteristics of high dynamic flight vehicle is analyzed,and generate the virtual inertial navigation data is generated.A navigation solution method using the dynamic weighting of measured inertial navigation data and virtual inertial navigation data is proposed based on the characteristics of flight errors,and the"velocity+attitude"matching Kalman filter method is used to further suppress the navigation errors.The inertial-based deep-coupling navigation method with embedded flight dynamics is proposed and proven through simulation.The results show that the proposed deep-coupling navigation method can significantly improve navigation accuracy.The improvement in navigation performance of the proposed method reaches 97.1%,72.9%,and 40%under different degrees of preset flight trajectory deviation.

关键词

高动态飞行器/飞行动力学/惯性基深耦合/自主导航/误差特性/卡尔曼滤波

Key words

high dynamic flight vehicle/flight dynamics/inertial-based deep-coupling/autonomous navigation/error characteristics/Kalman filter

引用本文复制引用

出版年

2024
兵工学报
中国兵工学会

兵工学报

CSTPCD北大核心
影响因子:0.735
ISSN:1000-1093
段落导航相关论文