首页|基于卷积神经网络的放射性核素识别算法

基于卷积神经网络的放射性核素识别算法

扫码查看
为实现对低计数、多种类的复杂放射性核素的准确识别,引入卷积神经网络(convolutional neural network,CNN)搭建针对低计数、多种类放射性核素识别模型.利用蒙特卡罗仿真创建由 241Am、133Ba、57Co、60Co、137Cs、152Eu 以及 40K 组成的单源、两源以及三源共 63 种不同种类放射性核素能谱数据库.利用仿真训练集和仿真验证集样本完成CNN训练及超参数优化,利用测试集样本验证模型性能.结果表明,该模型对低计数、多种类放射性核素具有良好的识别性能.
Radionuclide Identification Algorithm Based on Convolutional Neural Network
To realize the accurate identification of low count and multi-class complex radionuclides,the convolutional neural network is introduced to build a recognition model for low count and multi-class complex radionuclides.The radionuclide energy spectrum databaseconsisting of 241Am,133Ba,57Co,60Co,137Cs,152Eu,and 40Kwas established by the Monte Carlo simulation,which contained a total of 63 different radioactive nuclide sources.The simulation training set and simulation verification set samples were used to complete the training and hyperparameter optimization of convolutional neural networks.The test set samples were used to verify the model performance.The results demonstrate that the convolutional neural networks has good recognition performancein the identification of low count and multi-class complex radionuclides.

radionuclide recognitionconvolutional neural networkMonte Carlo simulation

朱岳武、梁杰、董喆、刘尔聃、李林珊、姜麟泉

展开 >

中国中原对外工程有限公司,北京 100044

中国兵器装备集团自动化研究所有限公司智能测控事业部,四川 绵阳 621000

北京联合大学,北京 100044

放射性核素识别 卷积神经网络 蒙特卡罗仿真

2025

兵工自动化
中国兵器工业第五八研究所

兵工自动化

北大核心
影响因子:0.469
ISSN:1006-1576
年,卷(期):2025.44(1)