首页|小波分析的自适应卡尔曼滤波模型在地铁隧道变形监测中的应用

小波分析的自适应卡尔曼滤波模型在地铁隧道变形监测中的应用

扫码查看
为了加强地铁安全保护机制,基于测量机器人智能化、自动化的特点,对某试验区的地铁隧道进行变形监测,选择Trimble S9 HP测量机器人进行数据采集,通过云平台进行数据处理及变形分析,最后利用小波分析的自适应卡尔曼滤波模型对后期形变量进行预测.结果表明,自动测量机器人的测量精度满足隧道监测要求,完成了地铁隧道变形监测的预设目标,分析隧道结构的变形特征并通过小波分析的自适应卡尔曼滤波模型进行变形预测,所得预测数据精度较高,可以为今后工程建设和地铁维护提供参考.
Application of adaptive Kalman filter model based on wavelet analysis in deformation monitoring of subway tunnel
To strengthen the safety protection mechanism of the subway, this paper monitored the deformation of a subwaytunnel in a test area based on the intelligent and automatic characteristics of the measuring robot. The Trimble S9 HP measuring robot was selected for data acquisition, and the data and deformation analysis were processed by the cloud platform. Finally, the adaptive Kalman filter model of wavelet analysis was adopted to predict the later deformation. The results show that the measuring precision of the automatic measuring robot meets the requirements of tunnel monitoring and achieves the preset goal of tunnel deformation monitoring. The deformation characteristics of the tunnel structure were analyzed and the deformation of the tunnel structure was predicted by the adaptive Kalman filter model based on wavelet analysis. The predicted data have high precision and can be used as a reference for future construction and subway maintenance.

subway tunnelautomatic measuring robotdeformation monitoringwavelet analysisadaptive Kalman filter model

孙常康、邓文彬、秦德胜、宋乐乐

展开 >

新疆大学建筑工程学院,新疆乌鲁木齐 830017

北京城建勘测设计研究院有限责任公司新疆分公司,新疆乌鲁木齐 830057

新疆交通规划勘察设计研究院有限公司,新疆乌鲁木齐 830002

地铁隧道 自动测量机器人 变形监测 小波分析 自适应卡尔曼滤波模型

国家自然科学基金新疆维吾尔自治区科学基金

518680742022D01C55

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(1)
  • 15