首页|基于多源数据的承德市脱贫县可持续发展评价

基于多源数据的承德市脱贫县可持续发展评价

扫码查看
为研究脱贫县可持续发展的潜力,本文选取河北省承德市作为研究区域,通过使用层次分析法、客观赋权熵权法,结合承德市本地特征,构建脱贫县可持续发展指数.运用夜间灯光影像、高分六号等多源数据,对影响县区可持续发展能力的空间人口、资源、产业、交通、民生、地理环境等因素进行分析.研究结果表明:①空间人口要素对贫困县可持续发展的影响最大,是贫困县可发展的主要驱动力;②利用高分影像数据、GlobeLand30数据、感兴趣点可以有效获取城市的地物信息;③利用多源数据、构建可持续发展指数,可较为客观、全面地反映县区的可持续发展活力;④各种指标的分布存在一定的相似性,基本上都是以县域中心城镇为中心向四周辐射;⑤使用CA-ANN模型可以实现对县区发展活力变化的有效预测.
Sustainable development evaluation of counties emerging from poverty in Chengde based on multi-source data
In order to study the potential of sustainable development in counties that emerged from poverty,this paper studied Chengde City,Hebei Province and constructed the sustainable development index of the counties that emerged from poverty by using the hierarchical analysis method and objective assignment entropy weighting method and combining with the local characteristics of Chengde City. By using multi-source data such as nighttime light images and Gaofen-6,the spatial population,resources,industry,traffic,livelihood,geographic environment,and other factors affecting the sustainable development ability of counties and districts were analyzed. The results of the study show that ① the spatial population element has the greatest influence on the sustainable development of poverty-stricken counties and is the main driving force for the sustainable development of poverty-stricken counties. ② The use of high-resolution image data,GlobeLand30 data,and points of interest can effectively obtain urban geophysical information. ③ The use of multi-source data and the construction of sustainable development indexes can reflect the sustainable development vitality of counties and districts more objectively and comprehensively. ④ There is a certain similarity in the distribution of various indexes,which basically radiates in all directions from the central town in the county. ⑤ The CA-ANN model can be used to effectively predict changes in the development vitality of counties and districts.

remote sensingcounties emerging from povertysustainable developmentcellular automataartificial neural networks

段红锐、张广伟

展开 >

唐山师范学院资源管理系,河北唐山 063000

遥感 脱贫县 可持续发展 元胞自动机 人工神经网络

河北省大学生创新创业训练计划

S202310099008

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(3)
  • 11