首页|城市建筑形态特征与地表温度关系研究

城市建筑形态特征与地表温度关系研究

扫码查看
城市建筑形态与地表温度关系研究,能够为城市未来空间形态优化、城市热岛效应缓解等提供科学参考.以重庆市南岸区为研究区,基于Landsat-8数据和城市建筑物调查数据,开展地表温度与城市建筑形态指标(平均建筑密度、平均建筑高度、建筑容积率、平均建筑体积、天空开阔度)相关性研究,分析不同梯度视角下地表温度与城市建筑形态指标的线性关系特征,建立多元线性回归模型,分析城市建筑形态对地表温度的影响及其差异性.结果显示:城市建筑形态指标中仅平均建筑密度与地表温度相关性较高,其余指标相关系数均较小,表明在山地城市区域地表温度对建筑形态指标响应不强;建立城市建筑形态指标与地表温度多元线性回归模型,因子数量越多模型越准确,但计算复杂度越高,且超过3个因子后模型虽然与地表温度相关性增加,但增加幅度较小,在兼顾模型准确性和计算复杂度时考虑2因子或3因子模型较为适宜.
Relationship between urban building forms and land surface temperature
The research on the relationship between urban building forms and land surface temperature (LST) can provide a scientific reference for optimizing future urban spatial forms and mitigating urban heat island effects. Taking Nan'an District of Chongqing as a study area,this paper collected Landsat-8 data and urban building survey data to analyze the correlation between LST and urban building form indicators (average building density,average building height,floor area ratio,average building volume,and sky view factor). The linear relationship between LST and urban building form indicators from different gradient perspectives was analyzed,and multiple linear regression models were established to study the influence of urban building forms on LST and the difference. The results show that among the urban building form indicators,only the average building density is highly correlated with LST,while the correlation coefficients of other indicators are small,indicating that the response of LST to building form indicators is not strong in mountainous urban areas. By constructing multiple linear regression models of urban building form indicators and LST,it is found that when the number of factors increases,the models are more accurate,with higher computational complexity. However,the increase in the correlation of the models with LST gradually slows down when there are more than three factors. It is more appropriate to choose models with two or three factors while considering model accuracy and computational complexity.

urban building formland surface temperatureaverage building densitysky view factor

吴凤敏、郑稚棚、李睿桐、钱进、秦松、蒲冠宇、曾攀、林晋鑫

展开 >

重庆市地理信息和遥感应用中心,重庆 401147

自然资源部国土空间规划监测评估预警重点实验室,重庆 401147

重庆工程职业技术学院,重庆 402260

城市建筑形态 地表温度 平均建筑密度 天空开阔度

重庆市自然科学基金重庆市教育委员会科学技术研究项目

CSTB2022NSCQ-MSX1484KJQN202103410

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(3)