首页|基于云计算平台的撂荒耕地提取方法

基于云计算平台的撂荒耕地提取方法

扫码查看
快速准确查明我国耕地撂荒情况对于粮食增产尤为重要,利用遥感进行撂荒地监测是一种重要手段.由于西南山区耕地破碎,撂荒地植被生长迅速与正常耕地难以区分,利用遥感提取撂荒耕地的传统方法耗时且存在算力限制,本文基于谷歌地球引擎(GEE)云平台,利用哨兵2号(Sentinel-2A)遥感影像,运用随机森林(RF)与支持向量机(SVM)两种机器学习方法进行四川省宜宾市耕地提取,并结合归一化植被指数(NDVI)阈值分割模型分割撂荒地,绘制出2018—2021宜宾市撂荒地分布图,撂荒地面积分别占耕地面积的6.37%、5.15%、4.31%、3.02%,校验总体精度达到83.87%.基于云计算平台机器学习方法并联合NDVI阈值分割模型,能利用更少实地调查样本实现大范围内撂荒地的提取.
Extraction method of abandoned farmland based on cloud computing platform
Quickly and accurately identifying the situation of abandoned farmland in China is important for increasing grain production,and monitoring abandoned farmland via remote sensing is an important means. The farmland in the southwestern mountainous areas is fragmented,and vegetation in abandoned farmland grows rapidly,making it difficult to distinguish abandoned farmland from normal farmland. Traditional methods based on remote sensing to extract abandoned farmland are time-consuming and have computational limitations. To address these issues,this paper utilized the Google Earth Engine (GEE) cloud platform and Sentinel-2 remote sensing images. It employed two machine learning methods,random forest (RF) and support vector machine (SVM) to extract farmland in Yibin City,Sichuan Province. The normalized difference vegetation index (NDVI) threshold segmentation model was used to segment abandoned farmland and draw a distribution map of abandoned farmland in Yibin City from 2018 to 2021. During this period,the abandoned farmland area accounted for 6.37%,5.15%,4.31%,and 3.02% of the total farmland,respectively,with an overall calibration accuracy of 83.87%. The application of machine learning methods based on cloud computing platforms,combined with NDVI threshold segmentation models,made it possible to extract abandoned farmland on a large scale with fewer field survey samples.

abandoned farmland extractionGoogle Earth EngineSentinel-2Arandom forest (RF)support vector machine (SVM)threshold segmentation model

阳瑞、王石英

展开 >

四川师范大学地理与资源科学学院,四川成都 610000

撂荒地提取 谷歌地球引擎(GEE) 哨兵二号(Sentinel-2A) 随机森林(RF) 支持向量机(SVM) 阈值分割模型

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(3)
  • 12