首页|机载激光雷达点云分类研究进展与趋势

机载激光雷达点云分类研究进展与趋势

扫码查看
机载激光雷达点云数据能为诸多行业应用提供框架性、基础性的技术支撑;点云数据也是智慧城市和实景三维(3D)中国建设的重要地理空间数据,高质量的点云分类能极大地提升地理空间数据的实体3D表征效果.因此,对机载激光雷达点云分类的技术研究进展情况进行凝练和梳理则显得较为重要.本论文从基于众源地图、基于特征、基于神经网络与深度学习、基于多模态数据利用等方面对点云分类方法进行论述,归纳各种方法的技术优势和潜在问题,并对发展趋势进行了分析.在城市复杂场景的激光雷达点云分类场景中,通过嵌入光学影像、融合众源地图标注信息,结合神经网络和深度学习方法,进行全局推理的多模态数据耦合,实现对机载激光雷达点云的高效率、高精度、高准确性的分类,将是今后需要进行深入研究的方向.
Research progress and trend of airborne LiDAR point cloud classification
Airborne light detection and ranging(LiDAR) point cloud data can provide the framework and fundamental technical support for many industry applications. Point cloud data is an important source of geospatial data for the construction of smart cities and the construction of three-dimensional(3D) real scene China. High-quality point cloud classification can significantly improve the solid 3D representation of geospatial data. Therefore,it is particularly important to summarize and sort out the research progress of airborne LiDAR point cloud classification. This paper explored point cloud classification methods based on multi-source maps,features,neural networks and deep learning,and multi-modal data utilization. This paper summarized the technical advantages and potential problems of various methods,and it analyzed their development trends. In the LiDAR point cloud classification of complex urban scenes,multi-modal data coupling of global inference was conducted through embedding optical images,fusing multi-source map annotation information,and combining neural networks and deep learning methods. All this is to achieve the classification of airborne LiDAR point cloud of high efficiency,high precision,and high accuracy,which will be the direction that requires in-depth research in the future.

airborne light detection and ranging(LiDAR)point cloud classificationneural networksdeep learningmultimodal datasemanticization of point clouds

王建楠、李楚钰、唐廷元、李瀚琨、梁鹏、荣伟

展开 >

北京市测绘设计研究院, 北京 100038

城市空间信息工程北京市重点实验室, 北京 100038

中航星图(北京)信息技术有限公司, 北京 100161

机载激光雷达 点云分类 神经网络 深度学习 多模态数据 点云语义化

北京市科技计划

D171100007417003

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(4)
  • 14