首页|面向隧道衬砌渗漏识别的深度学习方法综述

面向隧道衬砌渗漏识别的深度学习方法综述

扫码查看
衬砌渗漏是隧道工程主要病害之一,使用传统的方法进行隧道衬砌渗漏部位识别存在耗时长、效率低、可靠性不高、受外界条件影响大、距离衰减严重等各类问题.深度学习在计算机视觉领域已经取得了很显著的发展,能很好地完成一系列图像处理任务,通过对隧道衬砌图像进行识别,从而可靠地进行隧道衬砌病害目标检测.该研究分别从图像分类、目标检测、图像分割三个方面对隧道衬砌渗漏识别任务中的深度学习模型应用研究进行综述,分析了各模型的优缺点与传承关系,结合精确度、召回率、F1、mAP、mIoU等指标评价了各模型的性能,最后总结了现有深度学习模型的不足,并对其未来发展给出了有针对性的展望.该研究旨在为提高隧道衬砌渗漏识别效能提供依据,以推动深度学习在此方面的应用的进一步发展.
A review of deep learning methods for tunnel lining leakage identification
Lining leakage is one of the major diseases in tunnel engineering,and there are various problems such as long time consumption,low efficiency,poor reliability,strong influence from external conditions,and serious distance attenuation in the identification of tunnel lining leakage sites by traditional methods. Deep learning has made great progress in the field of computer vision,which can well accomplish a series of image processing tasks and can reliably perform target detection of tunnel lining diseases by identifying tunnel lining images. This study reviewed the research on the application of deep learning models in the task of tunnel lining leakage identification from three aspects of image classification,target detection,and image segmentation,analyzed the advantages,disadvantages,and inheritance relationship of each model,and evaluated the performance of each model by combining the indexes of precision,recall,F1,mAP and mIoU. It finally summarized the shortcomings of the existing deep learning models and gave a targeted outlook on the future development of the models,so as to provide a basis for improving the effectiveness of tunnel lining leakage identification and promote the further application of deep learning in this field.

deep learningimage classificationtarget detectionimage segmentationtunnel leakage

谭永辉、李小龙、曾宏晖

展开 >

东华理工大学自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室,江西南昌 330013

东华理工大学中核三维地理信息工程技术研究中心,江西南昌 330013

深度学习 图像分类 目标检测 图像分割 隧道渗漏

国家自然科学基金江西省研究生创新专项湖南省自然资源厅科技项目

42261078YC2023-S5562022-26

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(7)