首页|基于卡尔曼滤波的GA-PSO-SVM室内定位算法

基于卡尔曼滤波的GA-PSO-SVM室内定位算法

扫码查看
为了提高智能手机室内定位的精确度,本文建立行人运动曲线模型,并提出了一种融合卡尔曼滤波与参数优化支持向量机(SVM)的室内定位算法.首先,采用智能手机进行加速度计与陀螺仪数据采集;其次,引入卡尔曼滤波算法,对陀螺仪数据中包含的高斯白噪声进行去噪处理;最后,通过遗传算法(GA)与粒子群优化(PSO)算法优化支持向量机参数,建立室内定位模型,用于对陀螺仪数据预测中,陀螺仪数据中包含的常值漂移进行抑制.通过智能手机采集的室内数据进行实验,结果表明:本文提出的定位模型较直接使用微电系统(MEMS)传感器数据进行定位,定位精度有明显提升,其中平均误差降低了1.50 m,能够满足室内定位服务需求.
GA-PSO-SVM indoor positioning algorithm based on Kalman filtering
In order to improve the accuracy of indoor positioning on smartphones,this paper established a pedestrian motion curve model and proposed an indoor positioning algorithm that combined Kalman filtering and support vector machine (SVM) with optimized parameters. Firstly,smartphones were used for collecting data from accelerometer and gyroscope. Secondly,the Kalman filtering algorithm was introduced to denoise the Gaussian white noise contained in the gyroscope data. Finally,SVM parameters were optimized using genetic algorithm (GA) and particle swarm optimization (PSO) algorithms to establish an indoor positioning model for gyroscope data prediction,which suppresses the constant drift in the gyroscope data. The indoor data collected by smartphones was used for experiments,and the results show that the positioning model proposed in this paper has significantly improved the accuracy of positioning compared to the method directly using microelectro mechanical system (MEMS) sensor data,with an average error reduction of 1.50 meters,which can meet the needs of indoor positioning services.

Kalman filteringoptimization algorithmsupport vector machine (SVM)indoor positioning

徐林芝、黄建国、何东栋、徐晓婷

展开 >

常山县自然资源和规划局,浙江衢州 324000

浙江振邦地理信息科技有限公司,浙江衢州 324000

卡尔曼滤波 优化算法 支持向量机 室内定位

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(7)