首页|WPA-CSFTC模型在点云滤波中的应用

WPA-CSFTC模型在点云滤波中的应用

扫码查看
为了提升经典布料模拟滤波(CSF)算法的点云滤波精度、自适应性以及稳定性,本文提出了一种基于狼群算法(WPA)与地形认知的CSF算法.该改进滤波算法实现点云滤波的思路为:首先,将构建的地形认知模型扩展为粗精度数字高程模型(R-DEM);其次,通过点云地形归一化处理,将地形趋势与地形细节分离;最后,将经WPA优化后的CSF算法用于点云滤波中.使用某实测机载激光点云数据进行实验,并使用误差评判标准与Kappa系数对滤波结果进行精度评价.结果表明,WPA-CSFTC模型的点云滤波总误差较经典CSF算法与CSFTC算法分别降低了6.13%、9.67%,Kappa系数较经典CSF算法与CSFTC算法分别提升了23.60%、10.36%,对于点云分类效果更优,具有较高的点云滤波稳定性与自适应性.
Application of WPA-CSFTC model in point cloud filtering
In order to improve the point cloud filtering accuracy,adaptability,and stability of the classic cloth simulation filtering (CSF) algorithm,this paper proposed a CSF algorithm based on the wolf pack algorithm (WPA) and topography cognition. The improved filtering algorithm achieved point cloud filtering by following steps:firstly,the constructed topography cognition model was expanded into a rough digital elevation model (R-DEM);secondly,by normalizing point cloud topography,topography trends were separated from topography details;finally,the CSF algorithm optimized by WPA was used in point cloud filtering. The experiment was conducted using measured airborne laser point cloud data,and the accuracy of the filtering results was evaluated using error evaluation criteria and Kappa coefficients. The results show that the total point cloud filtering error of the WPA-CSFTC model is reduced by 6.13% and 9.67% compared to that of the classical CSF algorithm and CSFTC algorithm,respectively. The Kappa coefficients are increased by 23.60% and 10.36% compared to those of the classic CSF algorithm and CSFTC algorithm,respectively,and the classification effect for point clouds is better. It has high stability and adaptability in point cloud filtering.

point cloud filteringwolf pack algorithm (WPA)cloth simulation filtering (CSF)topography cognition model

陈能辉

展开 >

江西省建筑设计研究总院集团有限公司,江西南昌 330046

点云滤波 狼群算法(WPA) 布料模拟滤波(CSF) 地形认知模型

国家自然科学基金华东地区(南昌)空中交通管制能力提升基础设施建设工程项目

41971350民航函[2022]604号

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(8)