首页|改进U-Net模型在遥感影像建筑物提取中的应用

改进U-Net模型在遥感影像建筑物提取中的应用

扫码查看
针对传统遥感影像建筑物方法提取背景复杂影像时存在的精度低、图像边缘预测效果差等问题,本文在U-Net模型的基础上提出一种改进模型.首先,为防止过拟合现象产生,向U-Net收缩路径中加入随机失活(Dropout)函数;其次,为提升模型训练速度,向扩张路径中加入批量归一化层;最后,为提升模型的图像边缘预测效果,选择联合损失函数为模型损失函数.通过武汉大学(WHU)建筑物数据集进行实验,结果表明本文模型在建筑物提取完整度、边界分割精度等方面都有不错的表现,尤其是针对较小建筑物的提取效果更好,其中精度指标UIo、AO、Kappa系数分别达到了76.876%、91.413%、81.225%,相比对比模型的精度指标更优,从而验证了本文方法的可靠性.
Application of improved U-Net model in building extraction from remote sensing images
This paper proposed an improved model based on the U-Net model to address the issues of low accuracy and poor image edge prediction performance of traditional building extraction methods for remote sensing images in extracting complex background images. Firstly,to prevent overfitting,a random dropout function was added to the U-Net shrinkage path. Secondly,to improve the training speed of the model,batch normalization layers were added to the expansion path. Finally,in order to improve the image edge prediction performance of the model,the joint loss function was selected as the model loss function. Through experiments on the Wuhan University(WHU) building dataset,the results show that the model presented in this paper performs well in building extraction integrity and boundary segmentation accuracy,especially for smaller buildings. The accuracy indicators UIo and AO,as well as the Kappa coefficient reach 76.876%,91.413%,and 81.225%,respectively,which are better than the accuracy indicators of the comparative model. This verifies the reliability of the method proposed in this paper.

remote sensing imagesimprove the U-Net modelbuilding extractionjoint loss functionrandom dropout function

俞佳笠、马超

展开 >

宁波市阿拉图数字科技有限公司,浙江宁波 315042

遥感影像 改进U-Net模型 建筑物提取 联合损失函数 随机失活函数

北京市科技计划

Z211100004221015

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(8)