首页|基于轻量网络的遥感影像建筑物提取

基于轻量网络的遥感影像建筑物提取

扫码查看
针对现有建筑物提取算法存在的将研究重点集中于精度提升,而忽略模型计算量和参数量增长的问题,设计了一种用于高分辨率遥感影像建筑物提取的轻量网络模型.该模型以U-Net结构为基础,使用由深度可分离卷积和普通卷积组成的混合卷积单元搭建模型,以减少模型的计算量和参数量.同时,在模型的每个单元后增加轻量级的双注意力模块,加强模型的特征提取能力,提高建筑物提取精度,实现模型在性能和时空复杂度上的平衡.在Satellite dataset Ⅱ数据集上的实验结果表明,轻量网络模型的交并比(IoU)和F1分数达到了0.696 4和0.821 1,较U-Net模型分别提高了4.45%和3.18%;计算量和参数量较U-Net模型分别减少了34.56%和44.79%,整体性能提升明显.在提取效果方面,模型在面对复杂背景、小建筑物和周围地物干扰时的提取结果较其他神经网络模型更好.
Building extraction from remote sensing images based on lightweight network
Existing building extraction algorithms focus on the improvement of accuracy while ignoring the increase in model computation amount and parameters.To address this issue,a lightweight network model for building extraction from high-resolution remote sensing images was designed.The model was based on the U-Net structure,and a hybrid convolutional unit consisting of depthwise separable convolution and ordinary convolution was used to build the model,so as to reduce the computation amount and parameters of the model.At the same time,a lightweight dual attention module was added behind each unit of the model to enhance the feature extraction capability of the model and improve the building extraction accuracy,realizing a balance between performance and spatiotemporal complexity.The experimental results on Satellite dataset Ⅱ datasets show that the intersection over union(IoU)and F1 score of the lightweight network model reach 0.696 4 and 0.821 1,which are 4.45%and 3.18%higher than those of the U-Net model,respectively.The amount of computation and parameters are reduced by 34.56%and 44.79%compared with those of the U-Net model,which results in a significant improvement in overall performance.In terms of extraction effect,the model has better extraction results than other neural network models when facing the interference of complex backgrounds,small buildings,and surrounding features.

remote sensing imagebuilding extractionlightweight networkdepthwise separable convolutionattention module

陈振、张小青、周文娟

展开 >

福建水利电力职业技术学院,福建 永安 366000

遥感影像 建筑物提取 轻量网络 深度可分离卷积 注意力模块

福建省中青年教师教育科研项目福建省教育科学"十四五"规划2022年度课题

JAT220574

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(9)