首页|北京市不动产登记运维问题智能分类

北京市不动产登记运维问题智能分类

扫码查看
为提高北京市不动产登记的日常运维效率,解决人工处理效率低下、响应时间长的问题,本文提出一种基于变换器的双向编码器表示模型(BERT)的运维问题自动分类方法。首先使用BERT模型提取运维问题文本的上下文语义特征,然后利用全局最大池化技术提取文本的关键类别特征,最后通过SoftMax函数计算各类别的概率,并选择概率最大的类别作为分类结果。实验结果表明,本文方法的宏平均精确率(MP)、宏平均召回率(MR)和宏平均F1 值均大于93%,显著优于常用的文本分类技术,充分证明了该方法的有效性,对构建不动产登记智慧运维体系具有一定的参考意义。
Intelligent classification of operation and maintenance issues for real estate registration in Beijing
To improve the efficiency of daily operation and maintenance for real estate registration in Beijing and address the issues of low efficiency and long response time in manual processing,this paper proposed an automatic classification method for operation and maintenance issues based on the bidirectional encoder representations from transformers(BERT).Firstly,the BERT model was utilized to extract contextual semantic features of the operation and maintenance issue texts.Secondly,global max pooling technology was applied to extract the key category features of the texts.Finally,the SoftMax function was used to calculate the probabilities of each category,and the category with the highest probability was selected as the classification result.Experimental results demonstrate that the macro precision(MP),macro recall(MR),and macro-average F1 score of the method proposed in this paper all exceed 93%,significantly surpassing common text classification techniques.This fully proves the effectiveness of the method and provides certain reference significance for constructing an intelligent operation and maintenance system for real estate registration.

real estateintelligent classificationpre-trained language modelbidirectional encoder representation from transformer(BERT)dataset construction

董承玮、李云汉、邢晨、肖曼丽、刘世凡

展开 >

北京市测绘设计研究院,北京 100038

城市空间信息工程北京市重点实验室,北京 100038

北京市不动产登记中心,北京 101160

不动产 智能分类 预训练语言模型 基于变换器的双向编码器表示模型(BERT) 数据集构建

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(12)