首页|基于GF-2的海岸带植被提取

基于GF-2的海岸带植被提取

扫码查看
针对现有海岸带植被提取方法存在调查周期长、调查难度大、难以满足快速获取大范围海岸带植被状况的需要等问题.本文以辽宁省大连市部分沿海地区为研究区域,以高分二号(GF-2)多光谱影像为研究资料,提出了一种基于改进U形卷积神经网络(Res_UNet)的海岸带植被提取方法.该方法首先根据亚米级高分辨率影像制作海岸带植被提取数据集,然后融合具有18层网络深度的残差网络(ResNet18)和U-Net网络,将残差模块引入U-Net之中,提高模型的拟合精度,最后在1 200张独立测试样本组成的测试集上进行性能评估实验.结果表明:Res_UNet模型相比U-Net模型,平均交并比(IoU)I提升了2.554%,F1分值提升了1.949%.本文方法能够实现大范围海岸带植被的快速提取,为海岸带生态文明建设、自然岸线保有率的动态统计等提供支持.
Vegetation extraction in coastal zones based on GF-2
For the existing extraction methods for vegetation in coastal zones,there are problems such as a long investigation period and great difficulty in the investigation,and it is difficult to meet the need of rapidly obtaining the large-scale vegetation status in the coastal zones.To address these issues,this paper studied the coastal area of Dalian City,Liaoning Province and Gaofen-2(GF-2)multispectral images and proposed an extraction method for vegetation in coastal zones based on improved U-shaped convolutional neural networks(Res_UNet).Firstly,the method produced an extraction dataset for vegetation in coastal zones based on sub-meter high-resolution images.Secondly,it fused the residual network(ResNet18)with a network depth of 18 layers and the U-Net network and introduced the residual module into U-Net to improve the fitting accuracy of the model.Finally,performance evaluation experiments were conducted on a test set consisting of 1 200 independent test samples.The results show that the Res_UNet model improves the average intersection over union(IOU)I and F1 by 2.554%and 1.949%compared with the U-Net model.The method proposed in this paper can realize the rapid extraction of large-scale vegetation in coastal zones and provide support for the construction of ecological civilization in coastal zones and the dynamic statistics of natural shoreline retention rate.

high-resolution imagevegetation in coastal zonenatural shoreline retention ratedeep learningvegetation extraction

孔令尧

展开 >

辽宁省自然资源事务服务中心,辽宁 沈阳 110034

高分影像 海岸带植被 自然岸线保有率 深度学习 植被提取

2024

北京测绘
北京市测绘设计研究院,北京测绘学会

北京测绘

影响因子:0.55
ISSN:1007-3000
年,卷(期):2024.38(12)