Numerical Investigation of Hydrodynamic Characteristic of Undersea Vehicle with Low Noise
Given that the shortcomings of low propulsion efficiency, poor flexibility, and high noise of traditional propeller propulsion vehicles, numerical investigation of hydrodynamic characteristics of a new undersea vehicle propelled by bionic flexible bodies is conducted in three aspects: 1) the effect of amplitude and wave number of flexible body motions; 2) the effect of bionic surface of the vehicle; and 3) the effect of overall design of the vehicle. The numerical results show that increasing the amplitude will significantly increase the hydrostatic thrust and the propulsion resistance, while increasing the wave number will significantly increase the propulsion resistance and decrease the hydrostatic thrust. In addition, the front tip design of the vehicle and the bionic surface of the vehicle can reduce the propulsion resistance. These findings are beneficial to further optimize the vehicle and improve the vehicle propulsion efficiency.