首页|MFA-SGWNN:基于多特征聚合谱图小波神经网络的僵尸网络检测

MFA-SGWNN:基于多特征聚合谱图小波神经网络的僵尸网络检测

扫码查看
在僵尸网络攻击中,由于伪装后的僵尸网络流量数据特征与正常流量数据特征过于相似,使得传统的检测方法难以准确地进行区分.为解决这一问题,提出一种基于多特征聚合谱图小波神经网络的方法(Multi-feature Aggregation Spectral Graph Wavelet Neural Network,MFA-SGWNN),将流量的属性特征与空间特征相结合,能有效地捕获隐藏的感染主机流量特征,增强僵尸网络节点的特征表示,同时规避了数据样本不平衡和恶意加密流量对检测的影响.在 ISCX2014僵尸网络数据集和 CIC-IDS 2017(僵尸网络)数据集上的实验结果表明,MFA-SGWNN检测效果优于现有方法,具有更强的鲁棒性和泛化能力.
MFA-SGWNN:Botnet Detection Based on Multi-Feature Aggregation Spectral Graph Wavelet Neural Network
In botnet attacks,because the characteristics of disguised botnet traffic data are too similar to normal traffic data,it is difficult to distinguish them accurately by traditional detection methods.In order to solve this problem,this paper proposes a Multi-feature Aggregation Spectral Graph Wavelet Neural Network(MFA-SGWNN).This method combines the attribute and spatial features of traffic,which can effectively capture the hidden characteristics of infected host traffic,enhance the feature representation of botnet nodes,and avoid the influence of unbalanced data samples and malicious encrypted traffic on detection.Experimental results on the ISCX2014 botnet and CIC-IDS 2017(botnet)datasets show that MFA-SGWNN outperforms existing methods and has stronger robustness and generalization ability.

botnetgraph wavelet neural networkcyber security

吴悔、陈旭、景永俊、王叔洋

展开 >

北方民族大学计算机科学与工程学院,银川 750000

北方民族大学电气信息工程学院,银川 750000

僵尸网络 图小波神经网络 网络安全

中央高校基本科研业务费专项北方民族大学项目宁夏回族自治区重点研发计划

2022PT_S042023BDE02017

2024

北京大学学报(自然科学版)
北京大学

北京大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.785
ISSN:0479-8023
年,卷(期):2024.60(3)
  • 27