首页|基于生成对抗网络的遥感光学影像舰船样本仿真

基于生成对抗网络的遥感光学影像舰船样本仿真

扫码查看
基于遥感数据获取的真实舰船数据集数量非常有限,难以满足深度学习算法训练对样本数量的需求.针对此问题,利用三维模型和能够进行风格迁移的生成对抗网络,提出一种高质量的包含舰船目标的三波段光学高分辨率遥感图像仿真方法.基于构建的数据集,进行仿真样本的生成及评估.研究结果表明,该方法能够合成在视觉上接近真实影像的图像,通过加入合成样本对目标检测模型进行训练,可以使Faster-RCNN和YOLOv5的全类平均正确率mAP分别提升2.6%和2.3%.
Synthesis of Remote Sensing Optical Images with Ship Targets Based on Generative Adversarial Networks
Due to real-world constraints,the quantity of ship datasets derived from remote sensing data is sub-stantially limited and can't fulfill the extensive sample demands required for training deep learning algorithms. According to this problem,a high-quality synthesizing method for three-band optical high-resolution remote sensing images containing ship targets is introduced,which utilizes 3D models and generative adversarial networks with style transfer capabilities. Based on the constructed dataset,synthetic samples are generated and evaluated. The expe-riments indicate that the approach can synthesize images visually close to real images. Incorporating these syn-thetic samples into the training process of detection models results in an increase of 2.6% in mAP for Faster R-CNN and 2.3% for YOLOv5.

ship detectionhigh-resolution optical imagesynthetic samplesdeep learninggenerative adversarial networks

冀锐、马磊、张靖、王卫红、郭祉辀、万献慈、肖蕾、万玮

展开 >

北京大学地球与空间科学学院,北京 100871

中国电子科技集团公司电子科学研究院,北京 100041

大连理工大学城市学院,大连 116630

舰船目标检测 高分辨率光学影像 仿真样本 深度学习 生成对抗网络

2024

北京大学学报(自然科学版)
北京大学

北京大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.785
ISSN:0479-8023
年,卷(期):2024.60(5)