首页|基于图像分割技术的智能造字研究

基于图像分割技术的智能造字研究

扫码查看
目前,基于风格学习的智能造字技术生成的字体与用户手写风格相似度低,基于 GPU(graphics proce-ssing unit)风格迁移的方法成本高昂.为解决上述问题,利用深度学习和图像分割技术,提出一种新型智能造字方法,在保持高度相似风格的同时,满足用户个性化需求,并降低成本.采用 DeepLab v3+技术,用户输入的 775个字体图像经过数据质量评估模型筛选后,通过图像分割模型进行部件拆分,然后精细地调整部件并去除噪点,最终矢量化后生成 TrueType字体.与现有技术相比,该方法能够显著地提升相似度并降低成本,可以有效地满足用户个性化定制需求.
An Image Segmentation Based Technology for Intelligent Character Creation
Currently,the intelligent character creation technology based on style learning generates fonts with low similarity to the user's handwritten style,and the method based on Graphics Processing Unit(GPU)style transfer is expensive.To solve the problems above,a new intelligent character creation method is proposed using deep learning and image segmentation technology,which can maintain a highly similar style while meeting the personalized needs and reducing the generation cost.Using DeepLab v3+technology,775 font images input by users are filtered by a data quality evaluation model and are split to components by image segmentation models.Then,components are finely adjusted and noise is removed,and finally TrueType fonts are generated after vectorization.Compared with existing technologies,this method significantly improves the similarity and reduces the cost,and can effectively meet the personalized customization needs of users.

intelligent character creationDeepLab v3+data quality evaluation modelimage segmentation modelTruetype

蒋建斌、黄松、吴建国

展开 >

北京大学工学院,北京 100871

北京北大方正电子有限公司,北京 100086

智能造字 DeepLab v3+ 数据质量评估模型 图像分割模型 TrueType

2024

北京大学学报(自然科学版)
北京大学

北京大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.785
ISSN:0479-8023
年,卷(期):2024.60(6)