首页|基于改进YOLOv5的双目视觉测距算法研究

基于改进YOLOv5的双目视觉测距算法研究

扫码查看
针对SURF算法因其较高的计算复杂度和内存需求导致在资源受限的嵌入式系统或移动设备上使用受限的问题,本文融合改进的YOLOv5和SURF算法,提出YOLOv5_mobilenet主干网络构建目标检测模型,并引入了SE注意力机制和特征融合策略,在KITTI数据集上的识别率达到了88.50%,相比于改进前YOLOv5上升了0.7%,参数量下降了81.94%,浮点数运算量下降了86.14%.通过目标检测识别感兴趣区域,对感兴趣区域进行立体匹配并计算视差.实验结果表明,在500张立体图像上运行SURF算法,整幅图像平均视差计算时间为0.574秒,而采用感兴趣区域的SURF算法的平均计算时间仅为0.035秒,计算效率提高了15倍.此外,通过多次实验计算,得出平均误差率为2.23%.
Research on Binocular Vision Ranging Algorithm Based on Improved YOLOv5
In this paper,the improved YOLOv5 and the SURF algorithm are integrated to address the limited resources issue when deploying on resource-constrained embedded systems or mobile devices due to the high computational complexity and memory requirements of the SURF algorithm. An object detec-tion model based on the YOLOv5_mobilenet backbone network is constructed and the SE attention mechanism and the feature fusion strategy are introduced. On the KITTI dataset,recognition rate rea-ches 88.50%,which is a 0.7%improvement compared to the original YOLOv5. The number of param-eters decreases by 81. 94%,and the floating-point operation decreases by 86.14%. By detecting inter-est regions through object detection,stereo matching and disparity calculation are performed on these regions. Experiment results show that on 500 stereo images,average disparity calculation time for the entire image is 0.574 seconds,while the average calculation time using the SURF algorithm on interest regions is only 0.035 seconds,increasing the computational efficiency by 15 times. Additionally,through multiple experimental calculations,average error rate is determined to be 2.23%.

YOLOv5binocular visionSURF algorithmUAV

马英杰、刘素天、赵耿、杨亚涛

展开 >

北京电子科技学院电子与通信工程系,北京 100070

北京电子科技学院网络空间安全系,北京 100070

yolov5 双目视觉 SURF算法 无人机

2024

北京电子科技学院学报
北京电子科技学院

北京电子科技学院学报

影响因子:0.245
ISSN:1672-464X
年,卷(期):2024.32(2)