首页|基于RSS-YOLOv5s模型的现代汉服风格检测方法

基于RSS-YOLOv5s模型的现代汉服风格检测方法

扫码查看
汉服做为一种穿着时尚,深受年轻人的喜爱,但现代汉服的风格信息却难以被许多汉服爱好者准确辨识.在YOLOv5s模型的基础上,插入Repvgg模块的同时,引入SE注意力机制来提高模型的网络特征提取能力;使用SIoU_Loss优化损失函数提升边界框定位精度,从而达到实时检测汉服风格的目的.结果表明:该算法明显改善多项评价指标,整体精确率达到92.4%,召回率达到91.6%,平均精度均值达到91.8%,单张图像推理时间仅需15.0 ms.该方法能够快速准确地辨识汉服风格,帮助人们了解现代汉服的风格特征,为中华优秀传统文化的传承发展提供技术支持.
A Detection Method of Modern Hanfu Style Based on RSS-YOLOv5s Model
Hanfu has become a kind of wearing fashion for young people,but its modern style information is diffi-cult to be accurately identified by many Hanfu fans.Therefore,based on the YOLOv5s model,this paper improved the network feature extraction capability by inserting the Repvgg module and introducing the SE attention mecha-nism at the same time,and optimized the loss function using SIoU_Loss to improve the bounding box positioning ac-curacy,so as to realize the real-time detection of Hanfu style.The experimental results show that the algorithm a-chieves significant improvement in a number of evaluation indexes,with an overall precision rate of 92.4%,a re-call rate of 91.6%,an average precision mean of 91.8%,and a single-image inference time of only 15.0 ms.The method can recognize the style of Hanfu quickly and accurately,thus helping people to understand the stylistic characteristics of modern Hanfu and providing technical support for the inheritance and development of Chinese ex-cellent traditional culture.

Hanfu detectionYOLOv5sRepvgg moduleattention mechanismSIoU_Loss

张俊杰、蒋博闻、袁桦、李丽、朱强

展开 >

武汉纺织大学计算机与人工智能学院,武汉430200

纺织服装智能化湖北省工程研究中心,武汉430200

湖北省服装信息化工程技术研究中心,武汉430200

武汉纺织大学服装学院,武汉430073

武汉纺织服装数字化工程技术研究中心,武汉430073

展开 >

汉服检测 YOLOv5s Repvgg模块 注意力机制 SIoU_Loss

科技部重点研究专项湖北省教育厅哲学社会科学研究重点项目纺织服装智能化湖北省工程研究中心2022年度开放课题

2019YFB170630022D0622022HBITF06

2024

北京服装学院学报(自然科学版)
北京服装学院

北京服装学院学报(自然科学版)

影响因子:0.17
ISSN:1001-0564
年,卷(期):2024.44(1)
  • 19